首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A surface wave of frequency lying within bulk band of transverse waves is found in an elastic medium coated with a thin layer endowed with a surface mass density, surface Young's modulus and surface bending modulus. The wave is a particular case of surface resonance with infinite lifetime. In materials with negative Poisson's ratio (auxetics) the wave exists even for coating material with zero bending modulus, whereas with positive Poisson's ratio it requires the surface bending modulus to be larger than the surface Young's modulus. The manifestation of this wave in the reflection coefficient seems promising for fabrication of devices showing monochromator properties.  相似文献   

2.
徐威  兰忠  彭本利  温荣福  马学虎 《物理学报》2015,64(21):216801-216801
微小液滴在不同能量表面上的润湿状态对于准确预测非均相核化速率和揭示界面效应影响液滴增长微观机理具有重要意义. 通过分子动力学模拟, 研究了纳米级液滴在不同能量表面上的铺展过程和润湿形态. 结果表明, 固液界面自由能随固液作用强度增加而增加, 并呈现不同液滴铺展速率和润湿特性. 固液作用强度小于1.6的低能表面呈现疏水特征, 继续增强固液作用强度时表面变为亲水, 而固液作用强度大于3.5的高能表面上液体呈完全润湿特征. 受微尺度条件下非连续、非对称作用力影响, 微液滴气液界面存在明显波动, 呈现与宏观液滴不同的界面特征. 统计意义下, 微小液滴在不同能量表面上铺展后仍可以形成特定接触角, 该接触角随固液作用强度增加而线性减小, 模拟结果与经典润湿理论计算获得的结果呈现相似变化趋势. 模拟结果从分子尺度为核化理论中的毛细假设提供了理论支持, 揭示了液滴气液界面和接触角的波动现象, 为核化速率理论预测结果和实验测定结果之间的差异提供了定性解释.  相似文献   

3.
This work presents the modeling of a beam energy harvester scavenging energy from ambient vibration based on the phenomenon of flexoelectricity. By considering surface elasticity, residual surface stress, surface piezoelectricity and bulk flexoelectricity, a modified Euler-Bernoulli beam model for the energy harvester is developed. After deriving the requisite energy expressions, the extended Hamilton's principle and the assumed-modes method are employed to obtain the discrete electromechanical Euler-Lagrange's equations. Then, the expressions of the steady-state electromechanical responses are given for harmonic base excitation. Numerical simulations are conducted to show the output voltage and the output power of the flexoelectric energy harvesters with different materials and sizes. Particular emphasis is given to the surface effects on the performance of the energy harvesters. It is found that the surface effects are sensitive to the beam geometries and the surface material constants, and the effect of residual surface stress is more significant than that of the surface elasticity and the surface piezoelectricity. The axial deformation of the beam is also considered in the model to account for the electromechanical coupling due to piezoelectricity, and results indicate that piezoelectricity will diminish the output electrical quantities for the case investigated. This work could lead to the development of flexoelectric energy harvesters that can make the micro- and nanoscale sensor systems autonomous.  相似文献   

4.
5.
The self-consistent charge density functional based tight-binding method is used to calculate the effect of curvature on the structure, average energy of atoms and Young's modulus of armchair single-wall carbon nanotubes (SWCNTs) under axial strains. We found that as the amount of curvature increases, the average energy of atoms and the Young's modulus decrease and the equilibrium CC distance increases for (7,7) SWCNTs. However, we also found that the average energy of atoms and Young's modulus of (5,5) SWCNTs are weakly affected by increasing the amount of curvature. Our results also show that the average energy of atoms and Young's modulus of smaller diameter armchair nanotubes are smaller than that of the larger diameter ones.  相似文献   

6.
硅纳米线因受量子尺寸效应与表面效应的影响而具有奇特的力、电及其耦合特性,成为了纳米电子器件的核心构件.然而在硅纳米线的制备过程中,表面产生缺陷不可避免.因此本文采用分子动力学方法着重研究了表面缺陷浓度对不同横截面形状(正方形、六角形和三角形)的[110]晶向和[111]晶向硅纳米线杨氏模量的影响.研究结果表明,当硅纳米线仅有单一表面缺陷时,不同晶向硅纳米线的杨氏模量均随表面缺陷浓度增加而迅速单调减小.当表面缺陷浓度为10%时,杨氏模量的减小幅度在10%-20%之间,减小幅度的差异与硅纳米线的晶向以及横截面形状密切相关.当存在多个表面缺陷时,杨氏模量随着缺陷浓度的增加表现出了不同程度的波动趋势.三角形截面硅纳米线的杨氏模量波动幅度最大,正方形截面的波动较小,即表面缺陷分布的不同对正方形截面硅纳米线的杨氏模量影响较小,这表明表面缺陷的影响与其分布及硅纳米线的横截面形状密切相关.通过与实验结果对比,本文的研究结果揭示了表面缺陷是导致硅纳米线杨氏模量实验值变小的重要因素,因此在表征硅纳米线的力学性能时,需要考虑表面缺陷的影响.  相似文献   

7.
Silicon nanomembrane (SiNM) has drawn great attention for the application in nanoelectrical devices as it shows excellent flexibility and is compatible with the integrated circuit process. The mechanical property measurement of the SiNM with nanoscale thickness is critical. A suspended SiNM (40 nm thick) for mechanical measurements is fabricated by transferring a chemically etched ultrathin monocrystalline silicon film from silicon on insulator wafer to a substrate with a multi-hole array. And then, the atomic force probe is utilized to load force on the free-standing SiNM to obtain a force deflection curve, and then the Young's modulus of such floating SiNM can be directly calculated based on the large deflection plane model. It shows that the Young's modulus of such SiNM is basically consistent with that of the bulk silicon. However, the SiNMs’ floating area significantly affects the results, i.e., the Young's modulus varies with the ratio of the suspended area diameter (i.e., hole diameter) to the film thickness. The Young's modulus is independent of hole diameter when the ratio is greater than 425. According to this relationship, the variation of Young's modulus can be predicted for arbitrary thick SiNMs and any transferable nanofilms.  相似文献   

8.
Polyethylene has an orthorhombic lattice for which nine elastic constants exist; they are obtained in terms of the intra- and intermolecular forces. Constants involved in the 6-12 Lennard-Jones potential approximating the London dispersion type of van der Waals' forces are obtained by computing the crystal potential energy and comparing it with the cohesive energy. First and second nearest-neighbor interactions are considered to establish relationship between the elastic constants and the interaction constants. The latter are obtained in terms of the C—C bond, stretching, bending, and repulsive force constants and the L-J potential constants. A limited type of central force assumption is applied. Values of Young and shear moduli are obtained along the three axes. The value along the chain compares with the experimentally determined and calculated values for oriented polyethylene. Young's modulus along the lateral direction is of the order of Young's modulus of bulk polyethylene, showing that intermo-lecular forces are the ones that determine the Young modulus of bulk polyethylene.  相似文献   

9.
In the open literature, reports of mechanical properties are limited for semiconducting thermoelectric materials, including the temperature dependence of elastic moduli. In this study, for both cast ingots and hot-pressed billets of Ag-, Sb-, Sn- and S-doped PbTe thermoelectric materials, resonant ultrasound spectroscopy (RUS) was utilized to determine the temperature dependence of elastic moduli, including Young's modulus, shear modulus and Poisson's ratio. This study is the first to determine the temperature-dependent elastic moduli for these PbTe-based thermoelectrics, and among the few determinations of elasticity of any thermoelectric material for temperatures above 300 K. The Young's modulus and Poisson's ratio, measured from room temperature to 773 K during heating and cooling, agreed well. Also, the observed Young's modulus, E, versus temperature, T, relationship, E(T) = E 0(1–bT), is consistent with predictions for materials in the range well above the Debye temperature. A nanoindentation study of Young's modulus on the specimen faces showed that both the cast and hot-pressed specimens were approximately elastically isotropic.  相似文献   

10.
Strain rate effects on Hardness and Young's modulus of two glassy polymers, poly(diethylene glycol bis allyl carbonate) (CR39) and bisphenol-A polycarbonate (PC), were studied in the nanoscale range. Before analyzing material behaviors, we focused on a particular phenomenon prevailing at the first stage of the contact between the surface of these polymers and the Berkovitch diamond tip used in the experiments, leading to an apparent increase of the tip defect (i.e., the missing tip of the diamond from having a shape equivalent to a perfect cone). The common methods based on calibration functions of the tip appear to be inaccurate to calculate correctly the contact area at the nanoscale range for these polymers. A new method based on Loubet et al.'s model to calculate the contact area by taking account of the apparent tip defect is proposed. The hardness values obtained this way were compared to the compressive yield stress using Tabor's relationship. A hardness-yield stress ratio close to 2.0, as expected on such polymers, was found. A strain-rate effect on the load-depth curve for these two polymers is interpreted as an increase of the hardness with the strain rate. The results from quasi-static and dynamic (the continuous stiffness method) measurements are compared. The strain-rate effect on Young's modulus in dynamic conditions should be taken into account in the hardness calculation.  相似文献   

11.
石墨烯力学性能的研究对其在半导体技术中的应用是十分重要的,本文基于半连续体模型并结合石墨烯纳米结构特性,通过对原子的描述构建了石墨烯形变分量和位移分量的新关系,从而给出了单层石墨烯结构形变能,并计算了不同尺寸单层石墨烯的杨氏模量值.通过对不同方向杨氏模量的分析,讨论了单层石墨烯的手性行为.结果表明:随着尺寸的增加,单层石墨烯两个方向的杨氏模量分别趋于0.746 TPa和0.743 TPa,当尺寸相同时,两方向杨氏模量的最大差值不超过0.003 TPa,此结果与文献报道结果相符.在小应变情况下,单层石墨烯薄膜呈各向同性,且薄膜尺寸变化对该特性影响不大.该计算结果对研究石墨烯的其它力学特性提供一定的参考价值.  相似文献   

12.
珠光体是十分重要的组织结构,因此本文构建了含铁素体-渗碳体相界面的模型,并采用分子动力学模拟方法模拟纳米压入的过程。通过对模拟结果的力学性能和组织结构分析,探究了铁素体-渗碳体相界面效应。研究发现,距铁素体-渗碳体晶界不同距离(位置压入),在压入最初阶段,压头载荷随着压头与晶界距离的增大而增大,当压入深度达到一定深度后,载荷随着距离的增大而减小。杨氏模量和最大剪切模量受压头尖端下方原子结构的直接影响,硬度受到结构完整性和类型的共同影响。铁素体-渗碳体相界面影响了纳米压入过程中位错形核、增殖和扩展,宏观表现为在相同压入深度下,不同压入位置压头载荷的差异。  相似文献   

13.
刘亚会  种晓宇  蒋业华  冯晶 《中国物理 B》2017,26(3):37102-037102
The stability, electronic structures, and mechanical properties of the Fe–Mn–Al system were determined by firstprinciples calculations. The formation enthalpy and cohesive energy of these Fe–Mn–Al alloys are negative and show that the alloys are thermodynamically stable. Fe_3Al, with the lowest formation enthalpy, is the most stable compound in the Fe–Mn–Al system. The partial density of states, total density of states, and electron density distribution maps of the Fe–Mn–Al alloys were analyzed. The bonding characteristics of these Fe–Mn–Al alloys are mainly combinations of covalent bonding and metallic bonds. The stress-strain method and Voigt–Reuss–Hill approximation were used to calculate the elastic constants and moduli, respectively. Fe_(2.5)Mn_(0.5)Al has the highest bulk modulus, 234.5 GPa. Fe_(1.5)Mn_(1.5)Al has the highest shear modulus and Young's modulus, with values of 98.8 GPa and 259.2 GPa, respectively. These Fe–Mn–Al alloys display disparate anisotropies due to the calculated different shape of the three-dimensional curved surface of the Young's modulus and anisotropic index. Moreover, the anisotropic sound velocities and Debye temperatures of these Fe–Mn–Al alloys were explored.  相似文献   

14.
利用多尺度建模方法构建了聚酰亚胺/钽铌酸钾纳米颗粒复合物模型, 通过分子动力学模拟研究了不同尺寸钽铌酸钾纳米颗粒(5.5, 8.0, 9.4, 10.5, 11.5 Å)对复合材料的结构、弹性模量和相互作用能的影响规律, 并通过计算纳米颗粒表面原子键能和单位表面积原子数目探究了复合物机械性能提高的内部机理. 聚酰亚胺和聚酰亚胺/钽铌酸钾复合材料的杨氏模量分别为2.91和3.17 GPa, 泊松比分别为0.37和0.35, 钽铌酸钾纳米颗粒的引入可以显著改善聚酰亚胺的机械性能. 纳米颗粒表面原子的键能为8.62-54.37 kJ·mol-1, 表明颗粒与基体主要通过范德华力作用结合且有氢键存在. 计算结果表明, 相同掺杂比例下, 纳米颗粒尺寸越小, 纳米颗粒表面原子数目越大, 颗粒与基体作用更强, 杨氏模量的提高幅度越大, 尺寸效应越显著. 因此, 掺杂小尺寸纳米颗粒是提高聚酰亚胺机械性能的有效途径.  相似文献   

15.
宋坤  宋豪鹏  高存法 《中国物理 B》2017,26(12):127307-127307
The effective properties of thermoelectric composites are well known to depend on boundary conditions, which causes the macro performance of thermoelectric composite to be difficult to assess. The overall macro-performance of multilayered thermoelectric medium is discussed in this paper. The analytical solutions are obtained, including the heat flux, temperature,electric potential, and the overall energy conversion efficiency. The results show that there are unique relationships between the temperature/electric potential and the electric current/energy flux in the material, and whether the material is independent of or embedded in thermoelectric composites. Besides, the Peltier effect at the interface can significantly improve the overall energy conversion efficiency of thermoelectric composites. These results provide a powerful tool to analyze the effective behaviors of thermoelectric composites.  相似文献   

16.
Some phyllosilicate compounds have the ability of spontaneous scrolling because of the size mismatch between the covalently bounded metal oxide and silica sheets. Their unique structure and high theoretically predicted Young's modulus (around 210–230 GPa) induce phyllosilicates’ application as reinforcing fillers. However, previous nanomechanical experiments with individual phyllosilicate nanoscrolls are in poor agreement with theory. The main reason for this is the low accuracy of experiments, which leads to large measurement errors compared to measured average values. Here, the study of the mechanical properties of synthetic (Mg1–xNix)3Si2O5(OH)4 phyllosilicates is reported by testing a suspended nanoobject (a nanobridge) with an atomic force microscope (AFM). The Young's modulus of corresponding phyllosilicate model layers is also calculated by means of the density functional theory (DFT). The original AFM approach makes it possible to account for the probe slipping off the nanobridge and determine its boundary conditions. The measured Young's modulus values are considered within the models of surface tension and shear strain contributions. The shear strain appears to have a decisive impact on the measured Young's modulus (from 150 ± 70 GPa to 200 ± 210 GPa) and its spread.  相似文献   

17.
Polymers reinforced with natural fibers are beneficial to prepare biodegradable composite materials. A new expression for the Young's modulus of short, natural fiber (SNF) reinforced polymer composites was derived based on a micro-mechanical model. The Young's moduli of poly(lactic acid) reinforced with reed fibers and low-density polyethylene (LDPE) reinforced with sisal fibers, from literature data, were estimated in the fiber weight fraction range from 0 to 50% using the equation and both the compounding rule and the Halpin–Tsai equation, and the estimations were compared with the reported measured data. The results showed that the predictions of the Young's moduli by means of the new Young's modulus equation were close to the measured data from the low density polyethylene/sisal fiber composites, as well as the poly(lactic acid)/reed composites at high fiber concentration. Comparing with other Young's modulus equations, the new Young's modulus equation would be more convenient to use owing to the parameters in the equation being easily determined.  相似文献   

18.
The Stillinger–Weber potential is used to study the composition-dependent Young's modulus for Ge-core/Si-shell and Si-core/Ge-shell nanowires. Here, the composition is defined as a ratio of the number of atoms of the core to the number of atoms of a core–shell nanowire. For each concerned Ge-core/Si-shell nanowire with a specified diameter, we find that its Young's modulus increases to a maximal value and then decreases as the composition increases. Whereas Young's modulus of the Si-core/Ge-shell nanowires increase nonlinearly in a wide compositional range. Our calculations reveal that these observed trends of Young's modulus of core–shell nanowires are essentially attributed to the different components of the cores and the shells, as well as the different strains in the interfaces between the cores and the shells.  相似文献   

19.
In the present Letter, the multiple scattering theory (MST) for calculating the elastic wave band structure of two-dimensional phononic crystals (PCs) is extended to include the interface/surface stress effect at the nanoscale. The interface/surface elasticity theory is employed to describe the nonclassical boundary conditions at the interface/surface and the elastic Mie scattering matrix embodying the interface/surface stress effect is derived. Using this extended MST, the authors investigate the interface/surface stress effect on the elastic wave band structure of two-dimensional PCs, which is demonstrated to be significant when the characteristic size reduces to nanometers.  相似文献   

20.
The hardness and Young's modulus of 10 and 20 nm gold nanoparticles (Au NPs) modified with bovine serum albumin and streptavidin were measured using a nanoindenter. The Au NPs were immobilized on a semiconductor surface through organic self-assembled monolayers. Changes in mechanical properties occurred when the Au NPs were immobilized on the surface. The hardness and Young's modulus were dependent on the size of the NPs, and the proteins on the particles showed highly plastic and elastic behavior compared to flat surfaces modified with self-assembled monolayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号