首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isomeric title compounds, 2,7‐bis(2‐cyanoethylsulfanyl)‐3,6‐(decane‐1,10‐diyldithio)tetrathiafulvalene and 2,6‐bis­(2‐cyanoethylsulfanyl)‐3,7‐(decane‐1,10‐diyldithio)­tetra­thiafulvalene, both C22H28N2S8, comprise bis­(2‐cyano­ethyl­sulfan­yl)tetra­thia­fulvalene units tethered by a saturated deca­methyl­enedithio linker attached in either a cis or a trans manner. The tetra­thia­fulvalene (TTF) group is planar in the cis isomer, but distorted significantly from planarity and twisted about its long axis in the trans isomer. In both structures, inter­molecular inter­actions are segregated into regions in which TTF units are brought into close contact and regions where the polymethyl­ene chains are brought into close contact. In the cis isomer, TTF units exhibit π–π stacking inter­actions, while in the trans isomer they do not.  相似文献   

2.
The crystal structures of the two isomers bis­(1‐phenyl­ethyl­ammonium) hexa­chloridostannate(IV) and bis­(2‐phenyl­ethyl­ammonium) hexa­chloridostannate(IV), both (C8H12N)2[SnCl6], exhibit alternating organic and inorganic layers, which inter­act via N—H⋯Cl hydrogen bonding. The inorganic layer contains an extended two‐dimensional hydrogen‐bonded sheet. The Sn atom in the 1‐phenylethyl­ammonium salt lies on an inversion centre.  相似文献   

3.
The title compound, [Ni(C3H10N2)2(H2O)2](C6H6NO3S)2, contains alternating layers of sulfanilate anions and di­aqua­bis(1,3‐propane­di­amine)­nickel(II) cations. The Ni atom lies on an inversion centre and is hexacoordinated by the 1,3‐propane­di­amine ligands, which function as N,N′‐bidentate ligands, and the water mol­ecules, which are in a trans arrangement. The sulfanilate anions are arranged in layers, with the sulfonate and amine groups directed towards opposite sides of the layer. The structure is stabilized by a network of hydrogen bonding between the O and N atoms of the sulfanilate anions, the water mol­ecules, and the N atoms of the 1,3‐propane­di­amine ligands.  相似文献   

4.
The crystal structures of a pair of cis and trans isomers of the macrocyclic chloro­penta­amine title complex, as their tetra­chloro­zincate(II) salts, [CoCl(C11H27N5)][ZnCl4], are re­ported. The two distinct isomeric forms lead to significant variations in the Co—N bond lengths and, furthermore, hydrogen bonding between the complex ions is influenced by the folded (cis) or planar (trans) conformations of the coordinated ligand.  相似文献   

5.
The Zn atom in dichloro­[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)­methane]zinc(II), [ZnCl2(C11H16N4)], (I), is tetra­hedrally coordinated by two N atoms from one bis­(3,5‐dimethyl­pyrazol­yl)methane ligand and two terminal Cl atoms. The mol­ecule has no crystallographic symmetry. One H atom of the CH2 group of the bis­(3,5‐dimethyl­pyrazol­yl)methane ligand inter­acts with a Cl atom of an adjacent mol­ecule to yield inter­molecular C—H⋯Cl contacts, thereby forming a one‐dimensional zigzag chain extending along the b axis. On the other hand, in di‐μ‐chloro‐bis­{chloro­[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methane]cadmium(II)}, [Cd2Cl4(C11H16N4)2], (II), each of the two crystallographically equivalent Cd atoms is penta­coordinated by two N atoms from one bis­(3,5‐dimethyl­pyrazol­yl)methane ligand, and by one terminal and two bridging Cl anions. The mol­ecule has a crystallographic centre of symmetry located at the mid‐point of the Cd⋯Cd line. One H atom of the CH2 group of the bis­(3,5‐dimethyl­pyrazolyl)­methane ligand inter­acts with a Cl atom of an adjacent mol­ecule to produce pairwise inter­molecular C—H⋯Cl contacts, thereby affording chains of mol­ecules running along the c axis.  相似文献   

6.
In the crystal structure of the title complex, [Zn(C3H2O4)(C12H8N2)(H2O)2], the ZnII atom displays a distorted octa­hedral geometry, being coordinated by two N atoms from the 1,10‐phenanthroline ligand, two O atoms from different carboxyl­ate groups of the chelating malonate dianion and two O atoms of cis water mol­ecules. The complex mol­ecules are linked to form a three‐dimensional supramolecular array by both hydrogen‐bonding inter­actions between coordinated water molecules and the uncoordinated carboxyl­ate O atoms of neighboring mol­ecules, and aromatic π–π stacking inter­actions between neighboring phenanthroline rings.  相似文献   

7.
In the crystal structure of the title compound [systematic name: diaqua­bis(6‐methyl‐2,2‐dioxo‐1,2,3‐oxathia­zin‐4‐olato‐κO4)bis­(3‐methyl­pyridine‐κN)nickel(II)], [Ni(C4H4NO4S)2(C6H7N)2(H2O)2], the NiII centre resides on a centre of symmetry and has a distorted octa­hedral geometry. The basal plane is formed by two carbonyl O atoms of two monodentate trans‐oriented acesulfamate ligands and two trans aqua ligands. The axial positions in the octa­hedron are occupied by two N atoms of two trans pyridine ligands. Mol­ecules are stacked in columns running along the a axis. There are π–π stacking inter­actions between the mol­ecules in each column, with a distance of 3.623 (2) Å between the centroids of the pyridine rings. There are also O—H⋯O inter­actions between the columns.  相似文献   

8.
The title salt, (C5H5N4S)2[ZnCl4], consists of two 6‐thioxo‐1,6‐dihydro­purinium (6mpH2+) cations (A and B) and a tetra­chloro­zincate anion, which are held together by N—H⋯Cl and C—H⋯Cl inter­actions. There is an anion–π inter­action between one Cl atom of the [ZnCl4] anion and the pyrimidine ring of the 6mpH2+(B) cation. Inter­molecular π–π stacking inter­actions allow 6mpH2+(A) cations to form anti­parallel pairs. One inter­esting structural feature is the double N—H⋯N inter­molecular hydrogen bonds between two 6mpH2+(A) cations. This kind of inter­action, mimicking that of natural nucleobases, can be very valuable in designing new therapeutic purine derivatives.  相似文献   

9.
In the title compound, [Sn(C3H4F3)2Cl2(C5H5N)2], the Sn atom lies on an inversion centre and is octahedrally coordinated by two Cl atoms, two tri­fluoro­propyl groups and two N atoms in an all‐trans configuration. The electronegative tri­fluoro­propyl groups increase the electrophilic properties of the Sn atom, and the Sn—Cl and Sn—N bonds are shortened in comparison with those reported for analogous compounds.  相似文献   

10.
In the title compound, [RuCl2(C2H3N)(C27H31N3)]·0.5CH2Cl2, the RuII ion is six‐coordinated in a distorted octa­hedral arrangement, with the two Cl atoms located in the apical positions, and the pyridine (py) N atom, the two imino N atoms and the acetonitrile N atom located in the basal plane. The dichloromethane solvent mol­ecule lies on a twofold axis. The two equatorial Ru—Nimino distances are almost equal (mean 2.089 Å) and are substantially longer than the equatorial Ru—Npy bond [1.914 (4) Å]. It is observed that the NiminoM—Npy bond angle for the five‐membered chelate rings of pyridine‐2,6‐diimine complexes is inversely related to the magnitude of the M—Npy bond. The title structure is stabilized by intra‐ and inter­molecular C—H⋯Cl hydrogen bonds. The inter­molecular hydrogen bonds form an R66(24) ring and a chain of edge‐fused rings running parallel to the [001] direction.  相似文献   

11.
The crystal structures are reported of trans‐dioxocyclam dihydrate, C10H20N4O2·2H2O, a structural isomer of the well known cis‐dioxocyclam, and of its novel Ni complex, (1,4,8,11‐tetra­aza­cyclo­tetra­decane‐2,9‐dionato‐κ4N)­nickel(II) dihydrate, [Ni(C10H18N4O2)]·2H2O, the first example of a trans­ition metal complex of this ligand. Both mol­ecules lie on crystallographic centres of inversion. The free ligand has two of its N atoms turned outwards from the ring and hydrogen bonded to water mol­ecules. A major conformational change takes place in the complex in which the ligand binds in a trans tetradentate fashion, as suggested by the electronic spectrum. The nickel(II) ion is low spin, although the electronic spectrum of the complex in water indicates an equilibrium mixture of low‐spin and high‐spin species. The irreversible electrochemical oxidation of [NiL1] (L1 is deprotonated trans‐dioxocyclam, C10H18N4O2) in water occurs at a potential of 0.964 V [versus SHE (standard hydrogen electrode)], which is very similar to that for the Ni–cis‐dioxocyclam complex.  相似文献   

12.
The title compound, [(S)‐2‐(anilino­methyl)­pyrrolidine‐N,N′]‐chloro(η6para‐cymene)­ruthenium(II) chloride, [RuCl‐(C10H14)(C11H16N2)]Cl, has been synthesized by the reaction of [RuCl2(p‐cymene)]2 (p‐cymene is para‐iso­propyl­toluene) with (S)‐2‐(anilinomethyl)­pyrrolidine in triethyl­amine/2‐propanol. The Ru atom is in a pseudo‐tetrahedral environment coordinated by a chloride ligand, the aromatic hydro­carbon is linked in a η6 manner and the amine is linked via its two N atoms. The chloride anion is involved in hydrogen bonding with the di­amine moieties through N—H?Cl interactions, with N?Cl distances of 3.273 (4) and 3.352 (4) Å.  相似文献   

13.
The two new title complexes, [Cu(N3)(dpyam)2]PF6 (dpyam is di‐2‐pyridylamine, C10H11N3), (I), and [Cu(N3)(dpyam)2]Cl·4H2O, (II), respectively, have been characterized by single‐crystal X‐ray diffraction. Both complexes display a distorted square‐pyramidal geometry. Each Cu atom is coordinated in the basal plane by three dpyam N atoms and one azide N atom in equatorial positions, and by another N atom from the dpyam group in the apical position. In complex (I), the one‐dimensional supra­molecular architecture is assembled via hydrogen‐bonding inter­actions between the amine N atom and terminal azide N atoms and the F atoms of the PF6 anion. For complex (II), hydrogen‐bonding inter­actions between the amine N atom, the Cl anion and water O atoms result in a two‐dimensional lattice.  相似文献   

14.
The Mo atoms in the title compounds, i.e. triethyl­ammonium cis‐tetra­chloro­bis(4‐ethyl­pyridine‐N)­molybdate(III), cis‐(C6H16N)­[MoCl4(C7H9N)2], and trans‐tetra­chloro­bis(4‐ethyl­pyridine‐N)molybdenum(IV), trans‐[MoCl4(C7H9N)2], are six‐coordinate with octahedral geometry. The Mo atom in the latter complex lies on a site with crystallographic 2/m symmetry.  相似文献   

15.
The title compounds, (E)‐2‐[(2‐bromo­phenyl)imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (I), (E)‐2‐[(3‐bromo­phenyl)­imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (II), and (E)‐2‐[(4‐bromo­phenyl)imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (III), adopt the phenol–imine tautomeric form. In all three structures, there are strong intra­molecular O—H⋯N hydrogen bonds. Compound (I) has strong inter­molecular hydrogen bonds, while compound (III) has weak inter­molecular hydrogen bonds. In addition to these inter­molecular inter­actions, C—H⋯π inter­actions in (I) and (III), and π–π inter­actions in (I), play roles in the crystal packing. The dihedral angles between the aromatic rings are 15.34 (12), 6.1 (3) and 39.2 (14)° for (I), (II) and (III), respectively.  相似文献   

16.
In the title compound, [Mn(C5H3N2O4)2(H2O)2], the MnII atom lies on an inversion centre, is trans‐coordinated by two N,O‐bidentate 1H‐imidazole‐4,5‐di­carboxyl­ate monoanionic ligands [Mn—O = 2.202 (3) Å and Mn—N = 2.201 (4) Å] and two water mol­ecules [Mn—O = 2.197 (4) Å], and exhibits a distorted octahedral geometry, with adjacent cis angles of 76.45 (13), 86.09 (13) and 89.20 (13)°. The complete solid‐state structure can be described as a three‐dimensional supramol­ecular framework, stabilized by extensive hydrogen‐bonding interactions involving the coordinated water mol­ecules, the carboxy O atoms and the protonated imidazole N atoms of the imidazole‐4,5‐di­carboxyl­ate ligands.  相似文献   

17.
In the title compound, [Ir2(C16H13N2O3)4Cl2]·2CH2Cl2, the two Ir atoms, 3.7075 (6) Å apart, are bridged by two Cl atoms which straddle a twofold axis of rotation through the two Ir atoms. Each Ir centre resides in a distorted octa­hedral environment completed by two chelating 2,5‐bis­(4‐methoxy­phenyl)‐1,3,4‐oxadiazole ligands, with trans‐N—N and cis‐C—C dispositions. In the stacking structure, there are two types of hydrogen bonds, involving the meth­oxy substitutent, an N atom of the oxadiazole ring and the dichloro­methane solvent mol­ecules.  相似文献   

18.
The title compound, trans‐[RuIICl2(N1‐mepym)4] (mepym is 4‐methylpyrimidine, C5H6N2), obtained from the reaction of trans,cis,cis‐[RuIICl2(N1‐mepym)2(SbPh3)2] (Ph is phenyl) with excess mepym in ethanol, has fourfold crystallographic symmetry and has the four pyrimidine bases coordinated through N1 and arranged in a propeller‐like orientation. The Ru—N and Ru—Cl bond distances are 2.082 (2) and 2.400 (4) Å, respectively. The methyl group, and the N3 and Cl atoms are involved in intermolecular C—H?N and C—­H?Cl hydrogen‐bond interactions.  相似文献   

19.
In the title dimeric complex, [Cu2(C4H4O4)2(C7H6N2S)4], which possesses a centre of symmetry, the Cu atoms are enclosed in a 14‐membered ring. They adopt a distorted square‐bipyramidal (4+2) coordination. The four closest donor atoms are two N atoms of 2‐amino­benzo­thiazole ligands and two O atoms of the succinate carboxylate groups. They form a square‐planar cis arrangement, with an average Cu—N distance of 2.003 (3) Å and Cu—O distances of 1.949 (3) and 1.965 (3) Å. Two longer Cu—O bonds of 2.709 (3) and 2.613 (3) Å involving the remaining O atoms of the carboxylate groups complete the sixfold coordination of the Cu atoms. The H atoms of each amino group of the 2‐amino­benzo­thiazole molecules form intra‐ and inter­molecular N—H?O hydrogen bonds. A nearly perpendicular inter­molecular C—H?Cg interaction (Cg is the centroid of the imidazole ring) is observed. The intramolecular Cu?Cu distance is 6.384 (2) Å.  相似文献   

20.
The structures of the three title isomers, namely 4‐(2‐methyl­anilino)pyridine‐3‐sulfonamide, (I), 4‐(3‐methyl­anilino)pyridine‐3‐sulfonamide, (II), and 4‐(4‐methyl­anilino)pyridine‐3‐sulfonamide, (III), all C12H13N3O2S, differ in their hydrogen‐bonding arrangements. In all three mol­ecules, the conformation of the 4‐amino­pyridine‐3‐sulfon­amide moiety is conserved by an intra­molecular N—H⋯O hydrogen bond and a C—H⋯O inter­action. In the supra­mol­ecular structures of all three isomers, similar C(6) chains are formed via inter­molecular N—H⋯N hydrogen bonds. N—H⋯O hydrogen bonds lead to C(4) chains in (I), and to R22(8) centrosymmetric dimers in (II) and (III). In each isomer, the overall effect of all hydrogen bonds is to form layer structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号