首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chhatrapur beach placer deposit, situated in a part of the eastern coast of Orissa, is a newly discovered high natural background radiation area (HBRA) in India. The sand samples containing heavy minerals, were collected from Chhatrapur region by the grab sampling method at an interval of ∼1 Km. Radon exhalation rates were measured by “Sealed Can Technique” using LR-115 type type II in the sand samples containing heavy minerals collected from the beach. Radon activity is found to vary from 1177.1 to 4551.4 Bq m-3 whereas the radon exhalation rate varies from 423.2 to 1636.3 mBq m−2h−1 with an average value of 763.9 mBq m−2h−1. Effective dose equivalent in sand samples estimated from exhalation rate varies from 49.9 to 193.0 μSv y−1 with an average value of 90.1 μSv y−1. From the activity concentration of 238U, 232Th and 40K computed radium equivalent is found to vary from 864.0 to 11471.5 Bq kg−1 with an average value of 3729.0 Bq kg−1. External hazard index, Hex range from 2.3 to 31.0 with a mean value of 10.1, which is quite high. This value supports the conclusion based on high mean absorbed gamma dose rate in air due to the naturally occurring radionuclides as 1627.5 nGy h−1. A positive correlation has been found between U concentration and radon exhalation rate in the sand samples. The use of sand as construction material may pose a radiation risk to ambient environment.   相似文献   

2.
This study was aimed at providing the baseline data of terrestrial gamma dose rates and natural radioactivity to assess the corresponding health risk in the ambient environment of the Pahang State. Terrestrial gamma radiation (TGR) from 640 locations was measured with the mean value found to be 176?±?5 nGy h?1. Ninety-eight soil samples were analysed using a high-purity germanium detector (HPGe), and the mean concentrations of the radionuclides 226Ra, 232Th and 40K are 110?±?3, 151?±?5 and 542?±?51 Bq kg?1, respectively.226Ra and 232Th concentrations were found to be three times the world average, while that of 40K is quite higher than the world average value. The acid-intrusive geological formation has the highest mean concentrations for 226Ra (215?±?6 Bq kg?1), 232Th (384?±?12 Bq kg?1) and 40K (1564?±?153 Bq kg?1). The radium equivalent activities (Req) and the external hazard index (Hex) for the various soil types were also calculated. Some of the soil types were found to have values exceeding the internationally recommended levels of 370 Bq kg?1 and the unity value, respectively.  相似文献   

3.
Gamma radiation from natural radionuclides in thirty eight rock samples collected from Southeastern Nigeria was measured using gamma-ray spectrometry method. The activity concentrations varied from 13.1 ± 1.6 Bq kg−1 (ferrogeneisis shale) to 129 ± 38 Bq kg−1 (granite) for 226Ra, 42.4 ± 4.5 Bq kg−1 (siltstone) to 150 ± 23 Bq kg−1 (pegmatite) for 232Th and 64.5 ± 6.3 Bq kg−1 (ferrogeneisis shale) to 882 ± 298 Bq kg−1 (granite) for 40K. Hazard indices were used to determine the suitability of the rock samples for building in the context of radiological hazard. The results obtained for the radium equivalent activity and the external hazard index show that two of the samples, granite and pegmatite exceeded the recommended limits of 370 Bq kg−1 and 1, respectively. However the results of the gamma index were below the recommended limit. The dose rates and the annual effective dose calculated ranged from 0.012 to 0.042 μGy h−1 and 0.06–0.21 mSv, respectively.  相似文献   

4.
The influences on indoor radon concentrations in Riyadh, Saudi Arabia survey was carried out for 786 dwellings. The measurements were obtained by using a passive integrating ionization system with an E-Perm® Electret ion chamber. Radon levels ranged from 1 to 195 Bq m−3, with a mean value of 24.68 Bq m−3, the geometric mean and the geometric standard deviation are 21 and 2 respectively. 98.5% of the results were below the action level recommended by WHO of 100 Bq.m−3. The results were found to vary substantially due to types of houses and rooms, ventilation, seasons and building materials. Radon concentrations were higher in houses with no ventilation systems, and central air conditioners, and were relatively lower in well ventilated houses with red bricks and water air conditioners.  相似文献   

5.
Radon was measured in soil-gas and groundwater in the Budhakedar area of Tehri Garhwal, India in summer and winter to obtain the seasonal variation and its correlation with radon exhalation rate. The environmental surface gamma dose rate was also measured in the same area. The radon exhalation rate in the soil sample collected from different geological unit of Budhakedar area was measured using plastic track detector (LR-115 type II) technique. The variation in the radon concentration in soil-gas was found to vary from 1098 to 31,776 Bq.m−3 with an average of 7456 Bq.m−3 in summer season and 3501 to 42883 Bq.m−3 with an average of 17148 Bq.m−3 in winter season. In groundwater, it was found to vary from 8 to 3047 Bq.l−1 with an average value 510 Bq.l−1 in summer and 26 to 2311 Bq.l−1 with an average value 433 Bq.L−1 in winter. Surface gamma dose rate in the study area varied from 32.4 to 83.6 μR.h−1 with an overall mean of 58.7 μ-R.h−1 in summer and 34.6 to 79.3 μR.h−1 with an average value 58.2 μR.h−1 in winter. Radon exhalation rate from collected soil samples was found to vary from 0.1 × 10−5 to 5.7 × 10−5 Bq.kg−1.h−1 with an average of 1.5 × 10−5 Bq.kg−1.h−1 in summer season and 1.7 × 10−5 to 9.6 × 10−5 Bq.kg−1.h−1 with an average of 5.5 × 10−5 Bq.kg−1.h−1. A weak negative correlation was observed between radon exhalation rate from soil and radon concentration in the soil. Radon exhalation rate from the soil was also not found to be correlated with the gamma dose rate, while it shows a positive correlation with radon concentration in water in summer season. Inter-correlations among various parameters are discussed in detail.   相似文献   

6.
An extensive study was conducted to determine the activity concentrations of natural and artificial radionuclides 226Ra, 232Th, 40K, and 137Cs in soil samples of each governate of Jordan. A total of 370 samples have been measured using a high-purity germanium detector. The activity concentration for 226Ra, 232Th, 40K, and 137Cs has mean values of 42?±?3, 23?±?3, 309?±?21, and 3.7?±?0.9 Bq kg–1, respectively. The highest mean activity concentration for 226Ra was found to be 138?±?4 Bq kg–1 in the Alkarak governate. In the Ajloun and Jarash governates, the highest mean activity concentration was 35?±?3 Bq kg–1 for 232Th, and 14.2?±?1.9 Bq kg–1 for 137Cs, respectively. Geological influence on the activity concentrations was investigated using the one-way analysis of variance (ANOVA) and independent samples. The ANOVA results indicate that there are strong significant differences between the activity concentrations of 232Th, 40K, and 137Cs based on geological formations the radionuclides occur. The main contribution to gamma dose rate was due to 226Ra activity concentration. Radium equivalent and external hazard index are associated with a mean value of 98 Bq kg–1, and 0.266, respectively.  相似文献   

7.
The radiation survey of the ambient environment was conducted using two gamma detectors, and the measurement results were used in the computation of the mean external radiation dose rate, mean-weighted dose rate and annual effective dose, which are 144 nGy h?1, 0.891 mSv y?1 and 178 μSv, respectively. A high-purity germanium detector was used to determine the activity concentrations of 232Th, 226Ra and 40K in soil samples. The results of the gamma spectrometry of the soil samples show radioactivity concentration ranges from 19±1 to 405±13 Bq kg?1 with a mean value of 137±5 Bq kg?1 for 232Th, from 21±2 to 268±9 Bq kg?1with a mean value of 78±3 Bq kg?1 for 226Ra and from 23±9 to 1268±58 Bq kg?1 with a mean value of 207±13 Bq kg?1 for 40K. Radium equivalent activity (Raeq) and external hazard index (Hex) were 290 Bq kg?1 and 0.784, respectively, which were safe for the population. The mean lifetime dose and lifetime cancer risk for each person living in the area with average lifetime (70 y) were 12.46 mSv and 7.25×10?4 Sv year, respectively. The results were compared with values given in United Nations Scientific Committee on the Effects of Atomic Radiation 2000.  相似文献   

8.
The primordial radionuclides activity concentrations (226Ra, 40K and 232Th) are measured in some granite samples in this study. The collected granite materials are analyzed with NaI(Tl) gamma-ray spectrometry. The specific activity of 226Ra, 232Th and 40K values are in range 2.60?±?0.10 to 178.9?±?0.6?Bq?kg?1, 1.46?±?0.10 to 162.50?±?0.75?Bq?kg?1 and 19.8?±?0.3 to 579.7?±?2.8?Bq?kg?1 respectively. The radium’s equivalent activity, annual effective dose, absorbed dose rate, hazard index, radioactivity level index, activity utilization’s index and exposure rate are calculated for determination of radiological risk. The concentration of 226Ra (in the 71.4% of samples), 232Th (in the 71.4% of samples) and 40K (in the 14.3% of samples) in the granite samples are higher than average radioactivity concentrations of this radio-isotopes defined by ICRP (35.0, 30.0 and 400.0?Bq?kg?1, respectively).  相似文献   

9.
Studies of the natural γ-emitting radionuclides in different types of cements manufactured by different companies in Egypt (e.g. Iron (HI), Karnak (HK), and Super fine (HSu) products from Helwan Ltd.) have been done to determine their natural levels of radioactivity using a high-purity germanium detector (HPGe). Knowledge of radioactivity present in cement materials enables one to assess any possible radiological risks to human health. The results show that the highest mean values of 226Ra and 232Th activity are 234.01±20.12 and 46.56±4.65 Bq kg?1, respectively, measured in cement sample ‘Iron’ from Helwan company (HI). The corresponding value of 40K is 333.53±26.68 Bq kg?1 measured in cement sample ‘Karnak’ from Helwan company (HK). For 137Cs, this value is 3.27±0.31 Bq kg?1 measured in cement sample (HI). The average concentrations of measured radionuclides in the different cement samples are 72.21±6.39, 24.98±2.24, 134.49±10.45, and 0.58±0.08 Bq kg?1 for 226Ra, 232Th, 40K, and 137Cs, respectively. The measured activity concentrations for these radionuclides were compared with the reported data of other countries. Radium equivalent (Raeq) activities and different hazard indices were calculated to assess the radiation hazard. Iron HI cement sample shows a higher Raeq activity of 311.91±31.10 Bq kg?1. Calculations of absorbed doses in nGy h?1 show that the Iron (HI), Karnak (HK), and Super fine (HSu) products from Helwan company have higher activities than the permissible level (80 nGy h?1). On the basis of the external hazard index (H ex), Raeq activities, and annual effective dose rates for organs (H organ), the natural radioactivity of cement samples is not greater than the recommended values in the established standards and hence safe for use in building constructions and therefore for inhabitants.  相似文献   

10.
Analysis of marine sediments of the studied localities provides investigators with data to characterise the composition of these sediments allowing for the identification of particular pollution sources. A study of texture, geochemistry, X-ray diffraction and natural radionuclide content of shallow marine sediments from Quseir harbour, Safaga harbour and El-Esh area in the Red Sea coast of Egypt was conducted for the purpose of assessing the possible influence of human activities on the composition of the sediments. The activity concentrations of the naturally occurring radionuclides 226Ra, 232Th and 40K were measured by using γ-ray spectrometry. The mean activity concentrations of 226Ra, 232Th and 40K in all areas studied were found to be 71±6, 66±5 and 92±7 Bq kg?1 for 226Ra, 83±5, 71±7 and 162±23 Bq kg?1 for 232Th and 513±10, 493±20 and 681±28 Bq kg?1 for 40K, respectively. The results of the study presented were compared with corresponding results obtained in other coastal and aquatic environments in the Red Sea.  相似文献   

11.
12.
Seasonal (winter-summer) indoor and soil radon comparison is made in two villages in Najran region, south west of Saudi Arabia, using CR-39 Dosimeter. Summer indoor radon concentrations were measured in the villages of Fara Al-Jabal and Hadadah. The respective winter-summer average values of 42 ± 4 Bq m−3 and 74 ± 5 Bq m−3 are measured in Fara Al-Jable village and the average values of 47 ± 4 Bq m−3 and 76 ± 5 Bq m−3 are measured in Hadadah village. The respective winter-summer soil values are 1.40 ± 0.21 kBq m−3 and 0.99 ± 0.04 kBq m−3 in Fara Al-Jabal village while those measured in Hadadah village are 2.90 ± 0.17 kBq m−3 and 1.40 ± 0.66 kBq m−3. Indoor radon levels are found to be seasonal dependent while that of soil are found seasonal and location dependent. Meteorological and geological factors are expected to have caused the measured significant differences in radon levels in dwellings and soil in the two villages.  相似文献   

13.
Radon concentration in soil-gas and in the atmospheric air has been studied around Mysore city (12°N and 76°E) using Solid State Nuclear Track Detectors. The radon in soil-gas is found to be higher at a depth of 1 m than at a depth of 0.5 m from the ground surface. The higher radon concentration in soil was observed near Chamundi Hills and Karigatta village with average values of 5.94 kBq.m−3 and 5.32 kBq.m−3 at 1 m depth from the ground surface. Seasonal variations in radon in soil gas shows that, the concentration is lower in summer with an average value of 0.60 kBq.m−3 and higher in monsoon season with an average value of 4.70 kBq.m−3. Estimation of 226Ra in soil at these locations is also made using HPGe detector. The activity of 226Ra, varies from 4.82 to 74.23 Bq.kg−1 with an average value of 32.11 Bq.kg−1. Radon concentrations in soil-gas shows good correlation with the activity of 226Ra in soil with a correlation coefficient of 0.76  相似文献   

14.
In Rechna Doab, samples of the most common vegetation, perennial grass Desmostachya bipinnata (dab), were collected along with soil samples from 29 sites. Natural radioactivity of 226Ra, 232Th/228Ac and 40K was measured by using high purity germanium-based gamma ray spectrometer. Activity concentration levels of 226Ra, 232Th/228Ac and 40K in soil were found to be 46.8±6.2 (36.0–57.6), 61.4±5.9 (48.2–73.2) and 644.8±73.9 (537.7–868.4) Bq kg?1 (dry mass), respectively, and those in vegetation were 2.74±1.70 (1.00–6.39), 2.24±0.59 (1.56–2.61) and 172.72±113.37 (53.14–469.24) Bq kg?1 (dry mass), respectively. The measured values of the activity concentration in vegetation are comparable with some other international data. Calculated soil to vegetation transfer factors of 226Ra, 228Ac and 40K were 0.06±0.03 (0.02–0.14), 0.04±0.01 (0.03–0.04) and 0.26±0.16 (0.09–0.69). The mean outdoor absorbed dose rate in air for the area under study was determined as 8.22 nGy h?1 and the mean indoor absorbed dose rate in air was 11.52 nGy h?1. The total annual effective dose to the general public from the vegetation was found to be (0.02–0.16) mSv, which is below the recommended limit value of 1 mSv y?1 for the general public. The dab vegetation under study was found to be radiologically safe for the population and environment.  相似文献   

15.
The activity concentrations of the natural radionuclides namely 238Ra, 232Th and 40K are measured for soil samples collected from different locations of Faridkot and Mansa districts of Punjab. HPGe detector, based on high-resolution gamma spectrometry system is used for the measurement of activity concentration. The range of activity concentrations of 226Ra, 232Th and 40K in the soil from the studied areas varies from 21.42 Bq kg−1 to 40.23 Bq kg−1, 61.01 Bq kg−1 to 142.34 Bq kg−1 and 227.11 Bq kg−1 to 357.13 Bq kg−1 with overall mean values of 27.17 Bq kg−1, 95.22 Bq kg−1 and 312.76 Bq kg−1, respectively. Radium equivalent activities are calculated for the analyzed samples to assess the radiation hazards arising due to the use of these soil samples in the construction of dwellings. The absorbed dose rate calculated from activity concentration of 226Ra, 232Th and 40K ranges between 9.87 and 18.55, 38.01 and 88.68 and 9.40 and 14.79 nGy h−1, respectively. The total absorbed dose in the study area ranges from 61.10 nGy h−1 to 112.86 nGy h−1 with an average value of 84.80 nGy h−1. The calculated values of external hazard index (H ex) for the soil samples of the study area range from 0.36 to 0.68. Since these values are lower than unity, according to the Radiation Protection 112 (European Commission, 1999) report, soil from these regions is safe and can be used as construction material without posing any significant radiological threat to population. The corresponding average annual effective dose for indoor and outdoor measured in the study area are 0.42 mSv and 0.10 mSv respectively.   相似文献   

16.
The analysis of gamma-emitting radionuclides in nature, i.e. 226Ra, 232Th, 40K and 137Cs, has been carried out in soil samples collected from Peshawar University Campus and surrounding areas using a high purity germanium detector coupled with a computer-based high-resolution multichannel analyser. The activity concentrations in soil ranged from 30.20±0.65 to 61.90±0.95, 50.10±0.54 to 102.80±1.04, 373.60±4.56 to 1082±11.38 and 9.50±0.11 to 46.60±0.42 Bq kg?1 for 226Ra, 232Th, 40K and 137Cs, with a mean value of 45±7.70, 67±12.50, 878±180 and 19±9.20 Bq kg?1, respectively. The radium equivalent activity, internal and external hazard indices have mean values of 203.40±29.40 Bq kg?1, 0.56 and 0.68, respectively. The mean values of outdoor and indoor absorbed dose rates in air and the annual effective dose equivalents were found to be 106.50 and 128 nGy h?1 and 0.19 and 0.54 mSv y?1, respectively. In the present study, 40K was the major radionuclide present in soil samples. The presence of 137Cs indicates that this area also received some fallout from the nuclear accident of the Chernobyl power plant in 1986. The activity concentrations of radionuclides found in soil samples during the current investigation were nominal. Therefore, they are not associated with any potential source of health hazard to the public.  相似文献   

17.
The results of activity concentration measurements of natural occurring radioactive nuclides 238U, 235U, 232Th, 226Ra, and 40K in surface soil samples collected in the area of cities Tuzla and Lukavac, northeast region of Bosnia and Herzegovina were presented. Soil sampling was conducted at the localities that are situated in the vicinity of industrial zones of these cities. The measured activity was in the range from (8?±?4) to (95?±?28) Bq kg–1 for 238U, from (0.41?±?0.06) to (4.6?±?0.7) Bq kg–1 for 235U, from (7?±?1) to (66?±?7) Bq kg–1 for 232Th, from (6?±?1) to (55?±?6) Bq kg–1 for 226Ra, and from (83?±?12) to (546?±?55) Bq kg–1 for 40K. In order to evaluate the radiological hazard of the natural radioactivity for people living near industrial zones, the absorbed dose rate, the annual effective dose and the radium equivalent activity have been calculated and compared with the internationally approved values.  相似文献   

18.
After the accident at the Fukushima Daiichi nuclear power plant (NPP), outdoor school swimming pools at Fukushima were decontaminated to curb the redistribution of radioactivity into downstream farmlands. In the process, the radioactivity concentrations of the pool water and sediment substances (residue) were measured to estimate the deposition density of the fallout. At a pool situated 50 km away from the NPP, the average concentrations of radiocesium (134+137Cs) for the water and residue were quantified as 170 Bq L−1 and 3.6 × 105 Bq kg−1, respectively. Taking account of the radioactivity concentrations and of the water balance in and around the pool, the deposition density of radiocesium, as of August 2011, was precisely determined to be 0.32 ± 0.03 MBq m−2 (k = 1). The density corroborated the previous results obtained by other methods, i.e., airborne surveys, in-situ Ge surveys and soil samplings at neighboring locations. Other than radiocesium, the only gamma-emitting nuclide detected was 110mAg, with a concentration of 560 Bq kg−1 in the residue. The radioactivity concentrations of 89Sr, 90Sr, 238Pu and 239+240Pu in the water were all less than the minimum detectable activities – 2, 0.1, 0.002 and 0.002 Bq L−1, respectively.  相似文献   

19.
The radioactivity levels are poorly studied in non-coastal arid regions. For this reason, 38 locations covering an area of about 350 km2 in northeast Sinai, Egypt, were investigated by γ-ray spectroscopy. Moderately significant correlations among 238U, 234Th, and 226Ra isotopes and low significant correlations between the concentrations of 238U-series and 232Th in sand were obtained. No evidence of correlation was found between the concentrations of radioisotopes and pH, grain size, total organic matter content, bicarbonate or calcium carbonate concentrations of the sand samples. The mean values of soil-to-plant transfer factor were 0.15, 0.18, 1.52 and 0.74 for 226Ra, 232Th, 40K, and 137Cs, respectively. The range of concentrations of 226Ra, 232Th, and 40K in water samples collected from five wells were<0.4–0.16,<0.4–0.13, and<0.15–1.62 Bq l?1, respectively. The mean absorbed dose rate in outdoor air at a height of 1 m above the ground surface for the sand samples was 19.4 nGy h?1. The Raeq activities of the sands are lower than the recommended maximum value of 370 Bq kg?1 criterion limit for building materials.  相似文献   

20.
The activity concentrations of gamma emitting radionuclides were measured in surface soil samples from the Thrace region. 232Th, 238U, 226Ra, 40K and 137Cs activities and physico-chemical parameters of the soil samples were determined in samples collected from 73 sampling stations. Radionuclide concentrations measured were compared with those found in the samples from other locations of Turkey and from different countries. The average activity concentrations of 232Th, 238U, 226Ra, 40K and 137Cs were found to be 24.71 ± 8.79, 22.30 ± 7.93, 32.09±12.44, 509.00±160.05, 32.74±29.24 Bq kg?1, respectively. The mean value of the annual effective dose equivalent from the outdoor terrestrial gamma radiation was calculated as 57.2 μ Sv.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号