首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fe–N/C nanofiber (Fe–N/CNF) electrocatalysts were prepared by impregnating electrospun polyacrylonitrile nanofibers with iron nitrate (Fe(NO3)3) solution and subsequent heat treatment, exhibiting improved activity and stability during oxygen reduction reaction (ORR) both in 0.1 M KOH (pH?=?13) and 0.5 M H2SO4 (pH?=?0) electrolyte solutions. Higher treatment temperature and NH3 atmosphere were preferred by the Fe–N/CNF catalysts, and especially the concentration of Fe(NO3)3 solution exerted great effects on the surface morphology, structure, and thus electrocatalytic performance of the catalysts. The Fe–N/CNFs prepared using 0.5 wt% Fe(NO3)3 solution showed relatively higher ORR activity in alkaline and acid solutions and better stability especially in 0.5 M H2SO4 solution than the catalyst without Fe, probably because Fe could promote the graphitization of the polymer-converted carbon species, enhancing the resistance to electrochemical oxidation and thus the stability of the Fe–N/CNF catalysts.  相似文献   

3.
《中国化学快报》2023,34(8):108056
Nitrogen-doped carbon catalysts with hierarchical porous structure are promising oxygen evolution reaction (OER) catalysts due to the faster mass transfer and better charge carrying ability. Herein, an exquisite high nitrogen-containing ligand was designed and readily synthesized from the low-cost biomolecule adenine. Accordingly, three new MOFs (TJU-103, TJU-104 and TJU-105) were prepared using the Co(II) or Mn(II) ions as metal nodes. Through rationally controlling pyrolysis condition, in virtue of the high nitrogen content in well-defined periodic structure of the pristine MOFs, TJU-104–900 among the derived MOFs with hierarchical porous structure, i.e., N-doped graphitic carbon encapsulating homogeneously distributed cobalt nanoparticles, could be conveniently obtained. Thanks to the synergistic effect of the hierarchical structure and well dispersed active components (i.e., C=O, Co‒Nx, graphitic C and N, pyridinic N), it could exhibit an overpotential of 280 mV@10 mA/cm2 on carbon cloth for OER activity. This work provides the inspiration for fabrication of nitrogen-doped carbon/metal electrocatalysts from cost-effective and abundant biomolecules, which is promising for practical OER application.  相似文献   

4.
Ir–V nanoparticles supported on microstructure controlled carbon nanofibers (CNFs) or on carbon black, Vulcan XC-72 (XC-72), have been synthesized via chemical reduction, and the oxygen reduction reaction (ORR) properties of catalysts are investigated in this paper. The physico-chemical properties are characterized by high resolution transmission electron microscope (HRTEM), N2 physisorption and electrochemical analysis. HRTEM results show that the metal nanoparticles are separated on carbon support with well-controlled particle size, dispersity, and composition uniformity. Moreover, the metal nanoparticles on CNFs have a smaller size than those on XC-72. Cyclic voltammetric analysis reveals that Ir–V/CNFs exhibits a higher ORR activity than Ir–V/XC-72, and this may be associated with the smaller metal nanoparticles and the stronger metal-support interaction of Ir–V/CNFs. Linear sweep voltammetric analysis at different rotation rates proves that ORR on the Ir–V/CNFs electrode is a 4e? process.  相似文献   

5.
Corich core–Ptrich shell/C prepared by thermal decomposition and chemical reduction methods were treated by 20% H2SO4 aqueous solution and used as the electrocatalysts for the oxygen reduction reaction (ORR). The particle size range of Corich core–Ptrich shell (molar ratio of 0.92:1) on carbon powder support decreased from 3–8 to 1–6 nm when the time for the electrocatalysts immersed and treated with 20% H2SO4 aqueous solution increased from 0 to 4 h. Using Corich core–Ptrich shell (molar ratio of 0.92:1)/C treated with 20% H2SO4 from 0 to 4 h as the working electrode, the open circuit potential of ORR in 0.5 M HClO4 aqueous solution increased from 0.9995 to 1.0155 V, and the current density, mass activity, and specific activity at the overpotential of 0.1 V increased from 0.619 mA cm?2, 6.184 A g?1, and 18.614 μA cm?2 to 0.912 mA cm?2, 15.544 A g?1, and 23.413 μA cm?2, respectively.  相似文献   

6.
《Journal of Energy Chemistry》2017,26(6):1168-1173
Developing non-precious metal catalyst with high activity, good stability and low cost for electrocatalytic oxygen reduction reaction(ORR) is critical for the wide application of energy conversion system. Here, we developed a cost–effective synthetic strategy via silica assistance to obtain a novel Fe_3C/Fe–N_x–C(named as COPBP-PB-Fe-900-SiO_2) catalyst with effective active sites of Fe–N_xand Fe_3C from the rational design two-dimensional covalent organic polymer(COPBP-PB). The nitrogen-rich COP effectively promotes the formation of active Fe–N_x sites. Additionally, the silica not only can effectively suppress the formation of large Fe-based particles in the catalysts, but also increases the degree of carbonization of the catalyst.The as-prepared COPBP-PB-Fe-900-SiO_2 catalyst exhibits high electrocatalytic activity for ORR with a halfwave potential of 0.85 V vs. reversible hydrogen electrode(RHE), showing comparable activity as compared with the commercial Pt/C catalysts in alkaline media. Moreover, this catalyst also shows a high stability with a nearly constant onset potential and half-wave potential after 10,000 cycles. The present work is highly meaningful for developing ORR electrocatalysts toward wide applications.  相似文献   

7.
《中国化学快报》2023,34(1):107128
Traditional methods of preparing metal-organic frameworks (MOFs) compounds have the disadvantages such as poor dispersion, inefficient and discontinuous process. In this work, microchannel reactor is used to prepare MOFs-derived zeolite-imidazole material via flash nanoprecipitation to form ZIF-67 + PEI(FNP), which reduces the MOF synthesis time down to millisecond time interval while keeping the synthesized ZIF-67 + PEI(FNP) highly dispersed. The Co@N–C(FNP)catalyst obtained by flash nanoprecipitation and carbonization has a higher Co content and thus more active sites for oxygen reduction reaction than the Co@N–C(DM) catalyst prepared by direct mixing method. Electrochemical tests show that the Co@N–C(FNP) catalyst prepared by this method has excellent oxygen reduction performance, good methanol resistance and high stability. The onset potential and half-wave potential of Co@N–C(FNP) are 0.92 VRHE and 0.83 VRHE, respectively, which are higher than that of Co@N–C(DM) (Eonset = 0.90 VRHE and E1/2 = 0.83 VRHE). Moreover, the Zn-air battery assembled with Co@N–C(FNP) as the cathode catalyst has high open circuit voltage, high power density and large specific capacity. The performance of these batteries has been comparable to that of Pt/C assembled batteries. Density functional theory (DFT) calculations confirm that the Co (220) crystal plane present in Co@N–C(FNP) have stronger adsorption energy than that of Co (111) crystal plane in Co@N–C(DM), leading to better electrocatalytic performance of the former.  相似文献   

8.
Journal of Solid State Electrochemistry - In this work, nanorods like bimetallic Zn/Mn metal–organic-frameworks (MOFs) are proposed as the precursor for preparing MnxOy/porous carbon...  相似文献   

9.
Developing large-scale and highly efficient oxygen reduction reaction(ORR)catalysts acts a vital role in realizing wide application of metal–air batteries.Here,we propose a gas-foaming strategy to fabricate sustainable and 3D hierarchically porous N-doped carbon with high specific surface area and abundant defects sites derived from biomass.The obtained catalyst exhibits prominent ORR property with higher half-wave potential(0.861 V)and slightly lower kinetic current density(32.44 m A cm^-2),compared to Pt/C(0.856 V and 43.61 m A cm^-1).Furthermore,employing it as catalyst of air cathode,the Al–air battery delivers remarkable discharge performance with excellent power density of 401 m W cm^-2,distinguished energy density of 2453.4 Wh kg^-1 and extremely high open-circuit voltage of 1.85 V among the reported metal–air batteries in the literatures.This gas-foaming strategy for full utilization of biomass affords a chance to explore scalable advanced catalysts in metal–air battery.  相似文献   

10.
Alloy catalysts of Pt50Au50/CexC with various Ce additions (x) were prepared for the oxygen reduction reaction (ORR). The characterization of the alloy structures, surface species, and electro-catalytic activities of prepared alloy catalysts were performed by XRD, temperature-programmed reduction (TPR), and rotating disc electrode (RDE) technique, respectively. The ORR activity of Pt50Au50/C alloy catalyst with a promotion of 15% CeO2 was enhanced significantly in comparison to the commercial Pt/C catalyst within the mixed kinetic-diffusion control region. The addition of CeO2 decreased the particle sizes, increased the dispersion and enhanced the surface segregation of Pt which resulting in an alloy surface with a moderate oxophilicity on alloy catalysts.  相似文献   

11.
M–Ti/carbon black electrocatalysts (M: Mn, Fe, Co, Ni, Cu, Mo) were prepared by the polymerized complex (PC) method and subsequent nitridation under ammonia flow, and were investigated as cathodes for the oxygen reduction reaction (ORR) in 0.1 M H2SO4 aq. Among the metals investigated, Co and Fe gave high onset potentials of 0.86 and 0.87 V vs. RHE, respectively. In comparison with the Co-only catalyst, the Co–Ti catalyst showed higher current, reflecting high density of Co-related active sites. The presence of Ti was also essential for the electrode stability under severe acidic and oxidizing conditions.  相似文献   

12.
13.
High surface area carbon-supported Pt and bimetallic Pt–Fe catalysts are investigated for the oxygen electro-reduction reaction (ORR) in low-temperature direct methanol fuel cells (60 °C). The electrocatalysts are prepared using a combination of colloidal and incipient wetness methods allowing the synthesis of carbon-supported bimetallic nanoparticles with a particle size of about 2–3 nm. These materials are studied in terms of structure, morphology and composition using X-ray diffraction, X-ray fluorescence and transmission electron microscopy techniques. The electrocatalytic behaviour of these catalysts for ORR is investigated by employing the rotating disc technique. An enhancement of the ORR is observed with the bimetallic Pt–Fe catalyst in the oxygen-saturated electrolyte solution, with and without methanol. Dedicated to Prof. Dr. Teresa Iwasita on the occasion of her 65th birthday in recognition of her numerous contributions to interfacial electrochemistry.  相似文献   

14.
Developing highly efficient, cost-saving, and durable multifunctional electrocatalysts for oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) continues to be a significant challenge in the energy field. In this work, we decide to prepare an unusual multifunctional electrocatalyst, such as icosahedral palladium nanocrystals (PdNCs) encapsulating on N–MoO2–Mo2C half-hollow nanotube (HHNT) heterointerface, using an in-situ chemical reaction and following sonic probe irradiation method. All the experiments demonstrate that special defect-enriched heterointerfaces N–MoO2–Mo2C supported Pd nanocomposite can greatly improve the ORR activity (Eonset = 1.01 V and E1/2 = 0.90 V) with good stability, outstanding HER (η10 = 65 mV) and OER (η10 = 180 mV) performances than those of commercial precious electrocatalysts (Platinum on carbon [Pt/C] and ruthenium oxide [RuO2]). The overall water splitting electrolyzer fabricates by Pd/N–MoO2–Mo2C as both anode and cathode electrodes to achieve a current density of 10 Ma/cm2 at a cell voltage of 1.56 V, which surpasses the most recent reported electrocatalysts.  相似文献   

15.
16.
Ag nanoparticle-embedded one-dimensional β-CD (β-cyclodextrin)/PVP composite nanofibers were prepared using a one-step electrospinning technique. Ag nanoparticles were obtained in the AgNO3/β-CD/DMF solution, in which silver nitrate been introduced as the precursor, DMF as solvent, β-CD as reducing and capping agent. After electrospinning of the composite solution at room temperature, the β-CD/PVP nanofibers containing Ag nanoparticles were obtained. The electrospun composite solution containning Ag nsnopsrticles were confirmed by UV-visible absorption spectra; the resulting composite nanofibers were characterized by scanning electron microscopy , transmission electron microscopy, and X-ray diffraction. Ag-β-CD/PVP nanofiber exhibits good antibacterial property for Escherichia coli and Staphylococcus aureus. Consequently, we propose that these Ag nanoparticle-embedded 1D-nanostructures prepared via electrospinning may be used as antibacterial material.  相似文献   

17.
18.
Research on Chemical Intermediates - The present work reports the synthesis of a Pt-modified NiO–Al2O3 nanocomposite derived from graphene-supported layered double hydroxide (Pt–NiO/G)...  相似文献   

19.
The platinum–palladium alloy (Pt–Pd) catalysts were prepared on various supports including Vulcan XC72, Hicon Black (HB), multiwalled carbon nanotubes (MWCNTs), and titanium dioxide (TiO2) by a combined approach of impregnation and seeding using NaBH4 reduction at low temperature. Their oxygen reduction reaction (ORR) activities in single proton exchange membrane fuel cell (PEMFC) under a H2/O2 environment and their stability in an acid electrolyte (0.5 M H2SO4) were tested and compared with the Vulcan XC72-supported Pt (Pt/C) catalysts. The presence of the Pd metal as well as different types of supports affected the ORR activity in H2/O2 environment and stability in the acid electrolyte. Overall, the HB-supported Pt–Pd (Pt–Pd/HB) catalysts provided the highest current density at 0.6 V under a H2/O2 environment, while the MWCNT-supported Pt–Pd (Pt–Pd/MWCNT) catalyst provided the best stability in an acid electrolyte.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号