首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper develops a Mindlin microplate model based on the modified couple stress theory for the free vibration analysis of microplates. This non-classical plate model contains an internal material length scale parameter related to the material microstructures and is capable of interpreting the size effect that the classical Mindlin plate model is unable to describe. The higher-order governing equations of motion and boundary conditions are derived using the Hamilton principle. The p-version Ritz method is employed to determine the natural frequencies of the microplate with different boundary conditions. A detailed parametric study is conducted to study the influences of the length scale parameter, side-to-thickness ratio and aspect ratio on the free vibration characteristics of the microplate. It is found that the size effect is significant when the thickness of microplate is close to the material length scale parameter.  相似文献   

2.
3.
4.
In the present work, effect of von Kàrmàn geometric nonlinearity on the vibration behavior of a single-walled boron nitride nanotube (SWBNNT) is investigated based on nonlocal piezoelasticity theory. The SWBNNT is considered as a nanobeam within the framework of Timoshenko beam (TB). Loading is composed of a temperature change and an imposed axially electric potential throughout the SWBNNT. The interactions between the SWBNNT and its surrounding elastic medium are simulated by Winkler and Pasternak foundation models. The higher order governing equations of motion are derived using Hamilton's principle and the numerical solution of equations is obtained using Differential Quadrature (DQ) method. The effects of geometric nonlinearity, elastic foundation modulus, electric potential field, temperature change and nonlocal parameter on the frequency of the SWBNNT are studied in detail.  相似文献   

5.
This paper focuses on the size-dependent dynamic pull-in instability in rectangular micro-plates actuated by step-input DC voltage. The present model accounts for the effects of in-plane displacements and their non-classical higher-order boundary conditions, von Kármán geometric non-linearity, non-classical couple stress components and the inherent non-linearity of distributed electrostatic pressure on the micro-plate motion. The governing equations of motion, which are clearly derived using Hamilton's principle, are solved through a novel computationally very efficient Galerkin-based reduced order model (ROM) in which all higher-order non-classical boundary conditions are completely satisfied. The present findings are compared and successfully validated by available results in the literature as well as those obtained by three-dimensional finite element simulations carried out using COMSOL Multyphysics. A detailed parametric study is also conducted to illustrate the effects of in-plane displacements, plate aspect ratio, couple stress components and geometric non-linearity on the dynamic instability threshold of the system.  相似文献   

6.
7.
8.
基于严格耦合波理论分析了一种非对称偏振分束光栅的设计。这种偏振分束光栅分别在1级和0级衍射级次上衍射TE和TM偏振波。介绍了利用遗传算法设计偏振分束光栅的方法,并给出了优化实例。仿真结果表明:在设计波长为1.55时,TE偏振波在1级的衍射效率大于93%,TM偏振波在0级的衍射效率大于99%,此时1级和0级的透射消光比分别达到了9914.1和46841.5。通过对设计结果的分析发现,该偏振分束光栅在设计波长附近100nm的波长范围内都具有较高的消光比(大于100),达到了较好的偏振分束效果。  相似文献   

9.
A new elastic nonlocal stress model and analytical solutions are developed for torsional dynamic behaviors of circular nanorods/nanotubes. Unlike the previous approaches which directly substitute the nonlocal stress into the equations of motion, this new model begins with the derivation of strain energy using the nonlocal stress and by considering the nonlinear history of straining. The variational principle is applied to derive an infinite-order differential nonlocal equation of motion and the corresponding higher-order boundary conditions which contain a nonlocal nanoscale parameter. Subsequently, free torsional vibration of nanorods/nanotubes and axially moving nanorods/nanotubes are investigated in detail. Unlike the previous conclusions of reduced vibration frequency, the solutions indicate that natural frequency for free torsional vibration increases with increasing nonlocal nanoscale. Furthermore, the critical speed for torsional vibration of axially moving nanorods/nanotubes is derived and it is concluded that this critical speed is significantly influenced by the nonlocal nanoscale.  相似文献   

10.
Nonlinear free transverse vibration of an axially moving beam is investigated. A partial-differential equation governing the transverse vibration is derived from the Newton's second law. Under the assumption that the tension of beam can be replaced by the averaged tension over the beam, the partial-differential reduces to a widely used integro-partial-differential equation for nonlinear free transverse vibration. The method of multiple scales is applied directly to two equations to evaluate nonlinear natural frequencies. Numerical examples are presented to demonstrate the analytical results and to highlight the difference between two models. Two models yield the essentially same results for the weak nonlinearity, the small axial speed and the low mode, while the difference between two models increases with the nonlinear term, the axial speed, and the order of mode.  相似文献   

11.
An account is given of a study of free vibrations of a simply-supported beam with non-linear material properties. The material is of the Ramberg-Osgood type. Non-linear programming technique was used to find the response of the system. The variation of frequency with amplitude has been obtained for different values of material properties. The results indicate that the beam behaves like a soft spring for the type of non-linearity introduced by the material. This method can be used for all modes directly without reference to the lower modes.  相似文献   

12.
An account is given of a study of free vibrations of a simply supported beam with a central mass and undergoing creep deformation for the two cases (i) creep deformation is completely recoverable (without hysteresis) and (ii) creep deformation is partly recoverable (with hysteresis). The material is of the Ramberg-Osgood type. Numerical techniques were used to find the response of the system. The results indicate that the beam behaves like a soft spring and that amplitude and frequency decrease with time.  相似文献   

13.
This paper investigates the free vibration of protein microtubules (MTs) embedded in the cytoplasm by using linear and nonlinear Euler–Bernoulli beam model based on modified strain gradient theory. The protein microtubule is modeled as a simply support or clamped–clamped beam. Beside, the elastic medium surrounding of MTs is modeled with Pasternak foundation. Vibration equations are obtained by using Hamilton principle and these equations are solved according to boundary conditions. Finally the dependency of vibration frequencies on environmental conditions, MTs size, changes of temperature and material length scale parameters (size effects) is studied. By comparing the findings, it could be said that the MTs' frequency is greatly increased in the presence of cytoplasm and it is very dependent to material length scale parameters.  相似文献   

14.
Based on the modified couple-stress theory, three-dimensional analytical solutions of free vibration of a simply supported, multilayered and anisotropic composite nanoplate are derived by solving an eigenvalue system and using the propagator matrix method. By expanding the solutions of the extended displacements in terms of two-dimensional Fourier series, the final governing equations of motion with modified couple-stress effect are reduced to an eigenvalue system of ordinary differential equations. Analytical expressions for the natural frequencies and mode shapes of multilayered anisotropic composite plates with modified couple-stress effect are then derived via the propagator matrix method. Numerical examples are carried out for homogeneous thick-plates and sandwich composite plates to show the effect of the non-local parameter in different layers and stacking sequence on the mode shapes. The present solutions can serve as benchmarks to various thick-plate theories and numerical methods, and could be further useful for designing layered composite structures involving small scale.  相似文献   

15.
16.
Science China Physics, Mechanics & Astronomy - This paper presents the analytical simulation of an elastically restrained tapered cantilever beam using the energy balance method (EBM) and the...  相似文献   

17.
In this paper, an analytical solution is provided for the nonlinear free vibration behavior of plates made of functionally graded materials. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a power-law distribution of the volume fraction of the constituents. The fundamental equations for thin rectangular plates of functionally graded materials are obtained using the von Karman theory for large transverse deflection, and the solution is obtained in terms of mixed Fourier series. The effect of material properties, boundary conditions and thermal loading on the dynamic behavior of the plates is determined and discussed. The results reveal that nonlinear coupling effects play a major role in dictating the fundamental frequency of functionally graded plates.  相似文献   

18.
19.
Large deformation regime of micro-scale slender beam-like structures subjected to axially pointed loads is of high interest to nanotechnologists and applied mechanics community. Herein, size-dependent nonlinear governing equations are derived by employing modified couple stress theory. Under various boundary conditions, analytical relations between axially applied loads and deformations are presented. Additionally, a novel Galerkin-based assumed mode method (AMM) is established to solve the highly nonlinear equations. In some particular cases, the predicted results by the analytical approach are also checked with those of AMM and a reasonably good agreement is reported. Subsequently, the key role of the material length scale on the load-deformation of microbeams is discussed and the deficiencies of the classical elasticity theory in predicting such a crucial mechanical behavior are explained in some detail. The influences of slenderness ratio and thickness of the microbeam on the obtained results are also examined. The present work could be considered as a pivotal step in better realizing the postbuckling behavior of nano-/micro- electro-mechanical systems consist of microbeams.  相似文献   

20.
In recent decades, mathematical modeling and engineering applications of fractional-order calculus have been extensively utilized to provide efficient simulation tools in the field of solid mechanics. In this paper, a nonlinear fractional nonlocal Euler–Bernoulli beam model is established using the concept of fractional derivative and nonlocal elasticity theory to investigate the size-dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The non-classical fractional integro-differential Euler–Bernoulli beam model contains the nonlocal parameter, viscoelasticity coefficient and order of the fractional derivative to interpret the size effect, viscoelastic material and fractional behavior in the nanoscale fractional viscoelastic structures, respectively. In the solution procedure, the Galerkin method is employed to reduce the fractional integro-partial differential governing equation to a fractional ordinary differential equation in the time domain. Afterwards, the predictor–corrector method is used to solve the nonlinear fractional time-dependent equation. Finally, the influences of nonlocal parameter, order of fractional derivative and viscoelasticity coefficient on the nonlinear time response of fractional viscoelastic nanobeams are discussed in detail. Moreover, comparisons are made between the time responses of linear and nonlinear models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号