首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This work introduces an effective, inexpensive, and large-scale production approach to the synthesis of Fe2O3 nanoparticles with a favorable configuration that 5 nm iron oxide domains in diameter assembled into a mesoporous network. The phase structure, morphology, and pore nature were characterized systematically. When used as anode materials for lithium-ion batteries, the mesoporous Fe2O3 nanoparticles exhibit excellent cycling performance (1009 mA h g 1 at 100 mA g 1 up to 230 cycles) and rate capability (reversible charging capacity of 420 mA h g 1 at 1000 mA g 1 during 230 cycles). This research suggests that the mesoporous Fe2O3 nanoparticles could be suitable as a high rate performance anode material for lithium-ion batteries.  相似文献   

2.
Ordered mesoporous TiO2 materials with an anatase frameworks have been synthesized by using a cationic surfactant cetyltrimethylammonium bromide (C16TMABr) as a structure-directing agent and soluble peroxytitanates as Ti precursor through a self-assembly between the positive charged surfactant S+ and the negatively charged inorganic framework I? (S+I? type). The low-angle X-ray diffraction (XRD) pattern of the as-prepared mesoporous TiO2 materials indicates a hexagonal mesostructure. XRD and transmission electron microscopy results and nitrogen adsorption–desorption isotherms measurements indicate that the calcined mesoporous TiO2 possesses an anatase crystalline framework having a maximum pore size of 6.9 nm and a maximum Brunauer–Emmett–Teller specific surface area of 284 m2 g?1. This ordered mesoporous anatase TiO2 also demonstrates a high photocatalytic activity for degradation of methylene blue under ultraviolet irradiation.  相似文献   

3.
《Comptes Rendus Chimie》2015,18(4):385-390
This work aims to reduce the prices of a wide range of nanomaterials which are unreachable in the industry by using natural sources as silicon and aluminum precursors. In a previous work, silicon and aluminum have been extracted from Volclay after applying the alkaline fusion process at 550 °C, and a water treatment of this fused clay by adopting a weight ratio (1:4, fusion mass:H2O) to synthesize Al-MCM-41 nanomaterials. In this study, the weight ratio of fusion mass:H2O was increased to 1:8 to synthesize a highly structurally ordered MCM-41 under the same reaction conditions. The Al-MCM-41 nanomaterials are investigated by inductively coupled plasma optical emission spectrometry (ICP–OES), powder X-ray diffraction (XRD), N2 adsorption–desorption measurements and scanning electron microscopy (ESEM). As a result, the increase in the weight ratio fusion mass:H2O generates more silica and aluminum, which allows the formation of well-ordered MCM-41 nanomaterials with high pore volume (0.70 cm3/g), high surface area (1044 m2/g), and uniform mesoporous diameter (3.67 nm); as a consequence, the increase in the weight ratio fusion mass:H2O leads to an increase in the mass of Al-MCM-41 (9.3 g for 1:8 compared to 5 g for 1:4), whereas the yield of production of mesoporous materials increases to 86%.  相似文献   

4.
Activated carbon fibers (ACFs) with high surface area and highly mesoporous structure for electrochemical double layer capacitors (EDLCs) have been prepared from polyacrylonitrile fibers by NaOH activation. Their unique microstructural features enable the ACFs to present outstanding high specific capacitance in aqueous, non-aqueous and novel ionic liquid electrolytes, i.e. 371 F g−1 in 6 mol L−1 KOH, 213 F g−1 in 1 mol L−1 LiClO4/PC and 188 F g−1 in ionic liquid composed of lithium bis(trifluoromethane sulfonyl)imide (LiN(SO2CF3)2, LiTFSI) and 2-oxazolidinone (C3H5NO2, OZO), suggesting that the ACF is a promising electrode material for high performance EDLCs.  相似文献   

5.
Na-rich layered oxides as cathode materials for sodium-ion batteries were designed using an electrochemical method based on Li-rich layered oxides. The materials show high specific capacity that can reach 234 mAh/g at a current of 5 mA/g. The energy density of this material (644 Wh/kg) is even higher than those of commercial cathodes for lithium-ion batteries, such as LiFePO4 and LiMn2O4. Kinetic analysis of Na+ insertion/extraction into/from the Na-rich layered oxide reveals that the Na+ diffusion coefficient is about 10 14 cm2/s.  相似文献   

6.
We evaluated the CO2 adsorption capacity on granular and monolith carbonaceous materials, obtained by chemical activation of African palm stones with H3PO4, ZnCl2 and CaCl2 solutions at different concentrations. Textural properties of the synthesized materials were analyzed using N2 adsorption measurements at 77 K, the isotherms showed obtaining of materials microporous and moderately mesoporous, with surface areas between 161 and 1700 m2/g and pore volume between 0.09 and 0.64 cm3 g−1. Were observed different behaviors for textural parameters in each series, associated with the activating agent used in the preparation. The materials obtained have a CO2 adsorption capacity between ∼114 and 254 mg CO2/g, at atmospheric pressure and 273 K. It was established that the total amount of CO2 adsorbed under these experimental conditions is defined by the narrow micropore volume (Vn) and increased the total basicity of the materials.  相似文献   

7.
《Solid State Sciences》2012,14(2):250-257
CO2 adsorption properties on Mg modified silica mesoporous materials were investigated. By using the methods of co-condensation, dispersion and ion-exchange, Mg2+ was introduced into SBA-15 and MCM-41, and transformed into MgO in the calcination process. The basic MgO can provide active sites to enhance the acidic CO2 adsorption capacity. To improve the amount and the dispersion state of the loading MgO, the optimized modification conditions were also investigated. The XRD and TEM characteristic results, as well as the CO2 adsorption performance showed that the CO2 adsorption capacity not only depended on the pore structures of MCM-41 and SBA-15, but also on the improvement of the dispersion state of MgO by modification. Among various Mg modified silica mesoporous materials, the CO2 adsorption capacity increased from 0.42 mmol g−1 of pure silica SBA-15 to 1.35 mmol g−1 of Mg–Al–SBA-15-I1 by the ion-exchange method enhanced with Al3+ synergism. Moreover, it also increased from 0.67 mmol g−1 of pure silica MCM-41 to 1.32 mmol g−1 of Mg–EDA–MCM-41-D10 by the dispersion method enhanced with the incorporation of ethane diamine. The stability test by 10 CO2 adsorption/desorption cycles showed Mg–urea–MCM-41-D10 possessed quite good recyclability.  相似文献   

8.
A kind of mesoporous carbon spheres (MCS) containing in-frame incorporated nitrogen has been prepared by a facile polymerization-induced colloid aggregation method. As the electrode material for electric double layer capacitor (EDLC) in 5 mol/L H2SO4, the MCS products present excellent specific capacitance as 211 F/g much larger than that of the most popularly applied activated carbon at a high discharge current density of 1 A/g. Its specific capacitance can still remain 200 F/g at 20 A/g. The superior electrochemical performance of MCS is associated with the following characteristics: high specific surface area (∼1330 m2/g) contributed mainly by the mesopores, uniform pore size as large as 29 nm and moderate content of nitrogen (10 wt%), which are the requirements for ideal supercapacitors.  相似文献   

9.
Nano-structured Li3V2(PO4)3/carbon composite (Li3V2(PO4)3/C) has been successfully prepared by incorporating the precursor solution into a highly mesoporous carbon with an expanded pore structure. X-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy were used to characterize the structure of the composites. Li3V2(PO4)3 had particle sizes of < 50 nm and was well dispersed in the carbon matrix. When cycled within a voltage range of 3 to 4.3 V, a Li3V2(PO4)3/C composite delivered a reversible capacity of 122 mA h g? 1 at a 1C rate and maintained a specific discharge capacity of 83 mA h g? 1 at a 32C rate. These results demonstrate that cathodes made from a nano-structured Li3V2(PO4)3 and mesoporous carbon composite material have great potential for use in high-power Li-ion batteries.  相似文献   

10.
Introducing palladium to traditional platinum-based alloy electrocatalysts offers a novel approach to develop highly efficient anode electrocatalysts for direct methanol fuel cells. In this communication, we report the preparation of thin-wall mesoporous quaternary PtPdRuOs alloy catalyst via electrochemical co-reduction of their chloride precursors all dissolved in aqueous domains of the liquid crystalline phases of an oligoethylene oxide surfactant. Scanning electron micrographs (SEM) reveal that the deposit is composed of uniform nanospheres with an average diameter of around 120 nm and the average mole composition of the metal elements is Pt37Pd33Ru22Os10. Transmission electron micrographs (TEM) disclose that the nanospheres have an ordered nanostructure which is characterized by periodic pores of 3.6 ± 0.4 nm in diameter separated by walls of 2.4 ± 0.4 nm in thickness. X-ray diffraction studies signal a highly alloying degree for the four metal components in the deposit. The specific electrochemical surface area of the nanostructured powder assessed using underpotential deposited Cu stripping technique is as high as 105 m2 g–1, much higher than that of unsupported precious metal catalysts prepared using standard techniques. These characters suggest that the quaternary PtPdRuOs alloy materials with high surface area and thin-wall mesoporous structure would be a novel class of promising electrocatalysts for direct methanol fuel cells.  相似文献   

11.
A simple route has been employed to prepare nanosized Bi2O3 deposited on highly ordered mesoporous carbon. The electrochemical measurements reveal that, by loading only 10% Bi2O3 on the mesoporous carbon, the specific capacitance of the composite is improved by 62%, with the maximum value reaching 232 F g?1 at a sweep rate of 5 mV s?1. The specific capacitance of Bi2O3 is calculated and reaches 1305 F g?1 at 1 mV s?1. It is found that the mass transfer in the framework of the crystalline oxide is still difficult in spite of its nanosize, as evidenced by the decline of the specific capacitance of the Bi2O3 with the increase of the sweep rate. The cyclic life of composite materials is also measured and the capacitance only declines 21% after 1000 cycles.  相似文献   

12.
This paper reports the microwave-assisted synthesis of Co3O4 nanomaterials with different morphologies including nanoparticles, rod-like nanoclusters and macroporous platelets. The new macroporous platelet-like Co3O4 morphology was found to be the best suitable for reversible lithium storage properties. It displayed superior cycling performances than nanoparticles and rod-like nanoclusters. More interestingly, excellent high rate capabilities (811 mAh g?1 at 1780 mA g?1 and 746 mAh g?1 at 4450 mA g?1) were observed for macroporous Co3O4 platelet. The good electrochemical performance could be attributed to the unique macroporous platelet structure of Co3O4 materials.  相似文献   

13.
A green and efficient route has been employed to synthesize a worm-like mesoporous carbon with high specific surface area (2587 m2 g?1) and large pore volume (3.14 cm3 g?1). Three electrochemical methods have been used to measure its electrochemical performance. Worm-like mesoporous carbon performs the high specific capacitance (344 F g?1) at constant-current densities of 50 mA g?1.  相似文献   

14.
Photocurrent was observed upon monochromatic illumination of an ITO electrode coated with a TiO2 nanocrystalline mesoporous membrane with carotenoid 8′-apo-β-caroten-8′-oic acid (ACOA) deposited as a sensitizer (illuminated area 0.25 cm2) and immersed in an aqueous 10 mM hydroquinone (H2Q), 0.1 M NaH2PO4 solution (pH = 7.4) purged with argon, using a platinum flag counter electrode (area 3.3 cm2) and a SCE reference electrode. The carotenoid-sensitized short-circuit photocurrent reached 4.6 μA/cm2 upon a 40 μW/cm2 incident light beam at 426 nm, with an IPCE (%, incident monochromatic photon-to-photocurrent conversion efficiency) as high as 34%. The short-circuit photocurrent was stable during 1 h of continuous illumination with only a 10% decrease. An open-circuit voltage of 0.15 V was obtained (upon 426 nm, 40 μW/cm2 illumination) which remained at a constant value for hours. The observed open-circuit voltage is close to the theoretical value (0.22 V) expected in such a system. The action spectrum resembled the absorption spectrum of ACOA bound on the TiO2 membrane with a maximum near 426 nm. No decay of the ACOA on the TiO2 surface was observed after 12 h, presumably because of rapid regeneration of ACOA from ACOA+ at the surface by electron transfer from H2Q.  相似文献   

15.
A monoclinic lithium vanadium phosphate (Li3V2(PO4)3) and carbon composite thin film (LVP/C) is prepared via electrostatic spray deposition. The film is studied with X-ray diffraction, scanning and transmission electron microscopy and galvanostatic cell cycling. The LVP/C film is composed of carbon-coated Li3V2(PO4)3 nanoparticles (50 nm) that are well distributed in a carbon matrix. In the voltage range of 3.0–4.3 V, it exhibits a reversible capacity of 118 mA h g?1 and good capacity retention at the current rate of 1 C, while delivers 80 mA h g?1 at 24 C. These results suggest a practical strategy to develop new cathode materials for high power lithium-ion batteries.  相似文献   

16.
A novel [Cu(bpdo)2·2H2O]2+-supported SBA-15 catalyst (bpdo = 2,2′-bipyridine,1,1′-dioxide) was prepared by the impregnation method. The catalyst was characterized by XRD, TEM, and BET nitrogen adsorption–desorption method, FT-IR, UV–vis, and chemical analysis. XRD patterns and TEM analysis of [Cu(bpdo)2·2H2O]2+/SBA-15 showed highly ordered hexagonal mesoporous silica, even after immobilization. Also, nitrogen adsorption–desorption isotherms exhibited type-IV isotherms and H1 hysteresis loops according to the IUPAC classification of mesoporous materials. This green support was tested for the synthesis of benzoxanthenone and benzochromene derivatives under solvent-free conditions, with high yield of products via a simple experimental and work-up procedure.  相似文献   

17.
We describe the preparation of novel poly(thionine)-Au materials, where the poly(thionine)-Au nano-network and nanowires have been synthesized in aqueous solution via the polymerization of thionine using HAuCl4 as the oxidant in a single reaction setup. The synthesis process does not require templates, nor does it require large amounts of organic solvents or electrochemical methods. The morphology of the nanocomposites can be controlled by varying the thionine/HAuCl4 ratio. The resulting poly(thionine)-Au network was used to fabricate a novel non-enzyme hydrogen peroxide (H2O2) biosensor. In pH 7.0 phosphate buffer, almost interference-free determination of H2O2 was realized at − 0.1 V versus Ag/AgCl with a linear of 1 × 10 4 to 5 × 10 2 M, a correlation coefficient of 0.998 and a response time of < 2 s. The developed biosensor showed a detection limit of 0.2 μM (S/N = 3) with very good stability, reproducibility and high selectivity.  相似文献   

18.
19.
Li(Ni1/3Co1/3Mn1/3)O2 microspheres with a tap density of 2.41 g cm−3 have been synthesized for applications in high power and high energy systems, using a simple rheological phase reaction route. Cyclic voltammograms (CV) showed no shift of anodic and cathodic peaks centred at 3.81, 3.69 V for the Ni2+/Ni4+ couple after first cycle. The results of power pulse area specific impedance (ASI) and differential scanning calorimetry (DSC) tests showed lower power impedance and increased thermal stability of the electrode at high rate. These merits mentioned above provided significant improved capacity and rate performance for Li(Ni1/3Co1/3Mn1/3)O2 microspheres, which 159, 147 mAh g−1 discharge capacity was delivered after 100 cycles between 2.5–4.6 V vs. Li at a different discharge rate of 2.5 C (500 mA g−1), 5 C and a constant 0.5 C charge rate, respectively.  相似文献   

20.
Na4Co2.4Mn0.3Ni0.3(PO4)2P2O7 has been evaluated as a positive electrode for sodium-ion batteries. The novel material has two redox couples around 4.2 V and 4.6 V and can deliver the high capacity of ca. 103 mAh g 1 at the high current density of 850 mA g 1 (5 C). X-ray absorption spectroscopy (XAS) results show that the redox reactions of Co, Mn and Ni ions proceed simultaneously in the charge process and it is indicated the novel material provide high mixed potential by the redox reactions of Co, Mn and Ni ions. These findings suggest that the derivatives of Na4Co3(PO4)2P2O7 should be employed as high potential and high capacity electrode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号