首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Preparing nonprecious metal catalysts with high activity in the oxygen reduction reaction (ORR) can promote the development of energy conversion devices. Support‐free porous Mn2O3 was synthesized by a facile aerosol‐spray‐assisted approach (ASAA) and subsequent thermal treatment, and exhibited ORR activity that is comparable to commercial Pt/C The catalyst also exhibits notably higher activity than other Mn‐based oxides, such as Mn3O4 and MnO2. The rotating ring disk electrode (RRDE) study indicates a typical 4‐electron ORR pathway on Mn2O3. Furthermore, the porous Mn2O3 demonstrates considerable stability and a good methanol tolerance in alkaline media. In light of the low cost and high earth abundance of Mn, the highly active Mn2O3 is a promising candidate to be used as a cathode material in metal–air batteries and alkaline fuel cells.  相似文献   

2.
A mesoporous MnCo2O4 electrode material is made for bifunctional oxygen electrocatalysis. The MnCo2O4 exhibits both Co3O4‐like activity for oxygen evolution reaction (OER) and Mn2O3‐like performance for oxygen reduction reaction (ORR). The potential difference between the ORR and OER of MnCo2O4 is as low as 0.83 V. By XANES and XPS investigation, the notable activity results from the preferred MnIV‐ and CoII‐rich surface. The electrode material can be obtained on large‐scale with the precise chemical control of the components at relatively low temperature. The surface state engineering may open a new avenue to optimize the electrocatalysis performance of electrode materials. The prominent bifunctional activity shows that MnCo2O4 could be used in metal–air batteries and/or other energy devices.  相似文献   

3.
Novel dendrite‐like silver particles were electrodeposited on Ti substrates from a supporting electrolyte‐free 30 mmol L?1 Ag(NH3)2+ solution, to synthesize the den‐Ag/Ti electrode. Binary AgxCoy/Ti electrodes with different Ag:Co atomic ratios were further obtained by electrodeposition of Co particles on the den‐Ag/Ti electrode. Polyaniline (PANI) modified den‐Ag/Ti and AgxCoy/Ti electrodes, PANI(n)‐den‐Ag/Ti and PANI(n)‐AgxCoy/Ti, were also obtained by cyclic voltammetry at different numbers of cycles (n) in acidic and alkaline solutions containing aniline, respectively. All these electrodes exhibit high electroactivity for oxygen reduction reaction (ORR) in alkaline solution and their electroactivities follow the order: PANI(15)‐Ag31Co69/Ti>Ag31Co69/Ti>PANI(20)‐den‐Ag/Ti>den‐Ag/Ti. Among them, PANI(15)‐Ag31Co69/Ti displays the highest electrocatalytic activity for ORR with a much positive onset potential of 0 V (vs. Ag/AgCl) and a high ORR current density of 1.2 mA cm?2 at ?0.12 V (vs. Ag/AgCl). The electrocatalysts are electrochemically insensitive to methanol and ethanol oxidation, and, as cathode electrocatalysts of direct alcohol fuel cells, can resist poisoning by the possible alcohol crossover from the anode.  相似文献   

4.
Oxygen reduction is a significant cathodic reaction in the state-of-art clean energy devices such as fuel cell and metal–oxygen battery. Here, ZIF-incorporated hybrid polymeric fibres have been fabricated by using a dual-phase electrospinning method. These are then transformed into Co3O4-nanoparticle-decorated porous N-doped carbon fibres (ZIF-Co3O4/NCF) through multi-step annealing treatment. The resultant ZIF-Co3O4/NCF is interweaved into a self-supported film and can be used as a bi-functional catalyst for catalysing oxygen reduction in both aqueous and non-aqueous electrolytes. Electrochemical tests demonstrate that ZIF-Co3O4/NCF displays a high catalytic activity for oxygen reduction with a half-wave potential (E1/2) of 0.813 V (vs. RHE) and an almost favourable four-electron reduction pathway in alkaline medium. ZIF-Co3O4/NCF catalyst only shows 4 mV negative shift of E1/2 after 5000 continuous CV cycles. In addition, the ZIF-Co3O4/NCF can be applied as the cathode catalyst of non-aqueous Li–O2 battery, exhibiting a remarkable ORR activity in LiPF6 contained 1,2-dimethoxyethane electrolyte. The excellent electrocatalytic performance of ZIF-Co3O4/NCF is probably due to the abundance of active sites of graphitic carbon-wrapped Co3O4 nanoparticles, as well as the cross-linked fibrous nitrogen-doped carbon texture.  相似文献   

5.
Cobalt sulfide is a good candidate for both lithium ion batteries (LIBs) and cathodic oxygen reduction reaction (ORR), but low conductivity, poor cyclability, capacity fading, and structural changes hinder its applications. The incorporation of graphene into Co3S4 makes it a promising electrode by providing better electrochemical coupling, enhanced conductivity, fast mobility of ions and electrons, and a stabilized structure due to its elastic nature. With the objective of achieving high‐performance composites, herein we report a facile hydrothermal process for growing Co3S4 nanotubes (NTs) on graphene (G) sheets. Electrochemical impedance spectroscopy (EIS) verified that graphene dramatically increases the conductivity of the composites to almost twice that of pristine Co3S4. Electrochemical measurements indicated that the as‐synthesized Co3S4/G composites exhibit good cyclic stability and a high discharge capacity of 720 mA h g?1 up to 100 cycles with 99.9 % coulombic efficiency. Furthermore, the composites react with dissolved oxygen in the ORR by four‐ and two‐electron mechanisms in both acidic and basic media with an onset potential close to that of commercial Pt/C. The stability of the composites is much higher than that of Pt/C, and exhibit high methanol tolerance. Thus, these properties endorse Co3S4/G composites as auspicious candidates for both LIBs and ORR.  相似文献   

6.
Hybridization of organometallic complexes with graphene‐based materials can give rise to enhanced catalytic performance. Understanding the chemical structures within hybrid materials is of primary importance. In this work, archetypical hybrid materials are synthesized by the reaction of an organometallic complex, [CoII(acac)2] (acac=acetylacetonate), with N‐doped graphene‐based materials at room temperature. Experimental characterization of the hybrid materials and theoretical calculations reveal that the organometallic cobalt‐containing species is coordinated to heterocyclic groups in N‐doped graphene as well as to its parental acac ligands. The hybrid material shows high electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline media, and superior durability and methanol tolerance to a Pt/C catalyst. Based on the chemical structures and ORR experiments, the catalytically active species is identified as a Co‐O4‐N structure.  相似文献   

7.
The electrocatalytic performance of a spinel for the oxygen reduction reaction (ORR) can be significantly promoted by reversing its crystalline structure from the normal to the inverse. As the spinel structure reversed, the activation and cleavage of O?O bonds are accelerated owing to a dissimilarity effect of the distinct metal atoms co‐occupying octahedral sites. The CoIIFeIIICoIIIO4 spinel with the Fe and Co co‐occupying inverse structure exhibits an excellent ORR activity, which even exceeds that of the state‐of‐the‐art commercial Pt/C by 42 mV in alkaline medium.  相似文献   

8.
CO and formaldehyde (HCHO) oxidation reactions were investigated over mesoporous Ag/Co3O4 catalysts prepared by one-pot (OP) and impregnation (IM) methods. It was found that the one-pot method was superior to the impregnation method for synthesizing Ag/Co3O4 catalysts with high activity for both reactions. It was also found that the catalytic behavior of mesoporous Co3O4 and Ag/Co3O4 catalysts for the both reactions was different. And the addition of silver on mesoporous Co3O4 did not always enhance the catalytic activity of final catalyst for CO oxidation at room temperature (20 °C), but could significantly improve the catalytic activity of final catalyst for HCHO oxidation at low temperature (90 °C). The high surface area, uniform pore structure and the pretty good dispersion degree of the silver particle should be responsible for the excellent low-temperature CO oxidation activity. However, for HCHO oxidation, the addition of silver played an important role in the activity enhancement. And the silver particle size and the reducibility of Co3O4 should be indispensable for the high activity of HCHO oxidation at low temperature.  相似文献   

9.
The precursors of Co3O4 and Ag/Co3O4 composites with different Ag contents were synthesized with assistance of (NH4)2CO3 via a facile hydrothermal process. The final samples were fabricated by calcining each precursor at 400 °C according to TG experiment. The as-prepared samples were identified and characterized by thermogravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy, respectively. The results showed that the morphology of Co3O4 and Ag/Co3O4 composites were sheet-like. Ag nanoparticles were dispersed well in the nanosheets. The samples were used as electrocatalysts modified directly on a glassy carbon electrode for p-nitrophenol reduction in a basic solution. The results showed that p-nitrophenol could be reduced at a large peak current but a higher peak potential with Co3O4, at lower potentials with Ag/Co3O4 composites. Ag/Co3O4 composite with 3 % Ag showed more efficiently electrocatalytic activity than other composites. The present method suggested the potential application of Ag/Co3O4 composites in electrocatalysis.  相似文献   

10.
Sheet-like precursors of Co3O4 and Ag/Co3O4 composites with different Ag contents were synthesized with assistance of triethylamine via a hydrothermal process. The final samples were fabricated by calcing each precursor at 400 °C. The as-prepared samples were identified and characterized by thermogravimetric analysis and differential thermal analysis, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy, respectively. The Co3O4 and Ag/Co3O4 composite samples were used as electrocatalysts modified on a glassy carbon electrode for p-nitrophenol reduction in a basic solution. The electrocatalytic results indicated that all the samples showed enhanced electrocatalytic performance for p-nitrophenol by comparing a bare glass carbon electrode, and p-nitrophenol could be reduced by Co3O4 at a high peak current but a rather higher peak potential but be reduced effectively by Ag/Co3O4 composites at lower potential. Ag/Co3O4 composites with 4 % Ag displayed the highest electrocatalytic activity.  相似文献   

11.
Perovskite‐type oxides based on rare‐earth metals containing lanthanum manganate are promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline electrolyte. Perovskite‐type LaMnO3 shows excellent ORR performance, but poor OER activity. To improve the OER performance of LaMnO3, the element cobalt is doped into perovskite‐type LaMnO3 through a sol–gel method followed by a calcination process. To assess electrocatalytic activities for the ORR and OER, a series of LaMn1?xCoxO3 (x=0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) perovskite oxides were synthesized. The results indicate that the amount of doped cobalt has a significant effect on the catalytic performance of LaMn1?xCoxO3. If x=0.3, LaMn0.7Co0.3O3 not only shows a tolerable electrocatalytic activity for the ORR, but also exhibits a great improvement (>200 mV) on the catalytic activity for the OER; this indicates that the doping of cobalt is an effective approach to improve the OER performance of LaMnO3. Furthermore, the results demonstrate that LaMn0.7Co0.3O3 is a promising cost‐effective bifunctional catalyst with high performance in the ORR and OER for application in hybrid Li?O2 batteries.  相似文献   

12.
Fe−N−C catalysts with single-atom Fe−N4 configurations are highly needed owing to the high activity for oxygen reduction reaction (ORR). However, the limited intrinsic activity and dissatisfactory durability have significantly restrained the practical application of proton-exchange membrane fuel cells (PEMFCs). Here, we demonstrate that constructing adjacent metal atomic clusters (ACs) is effective in boosting the ORR performance and stability of Fe−N4 catalysts. The integration of Fe−N4 configurations with highly uniform Co4 ACs on the N-doped carbon substrate (Co4@/Fe1@NC) is realized through a “pre-constrained” strategy using Co4 molecular clusters and Fe(acac)3 implanted carbon precursors. The as-developed Co4@/Fe1@NC catalyst exhibits excellent ORR activity with a half-wave potential (E1/2) of 0.835 V vs. RHE in acidic media and a high peak power density of 840 mW cm−2 in a H2−O2 fuel cell test. First-principles calculations further clarify the ORR catalytic mechanism on the identified Fe−N4 that modified with Co4 ACs. This work provides a viable strategy for precisely establishing atomically dispersed polymetallic centers catalysts for efficient energy-related catalysis.  相似文献   

13.
A series of catalysts (g-C3N4@MWCNTs/Mn3O4) were prepared from g-C3N4, MWCNTs, and Mn3O4 for oxygen reduction reaction (ORR) in zinc–air batteries. From the half-cell tests, the loading of 35 % Mn3O4 (sample GMM35) presents an excellent activity toward ORR in alkaline condition. Rotating ring-disk electrode (RRDE) studies reveal that 3.6~3.8 electrons are transferred with a H2O2 yield of 11.4 % at ?0.4 V. Meanwhile, the GMM35 nanocomposite exhibits the same durability as commercial 20 wt% Pt/C in alkaline condition, but it shows lower peak power density (192.4 mW cm?2 at 229.1 mA cm?2) and cell voltage than those with a commercial Pt/C catalyst (260.9 mW cm?2 at 285.4 mA cm?2).  相似文献   

14.
For rechargeable metal–air batteries, which are a promising energy storage device for renewable and sustainable energy technologies, the development of cost-effective electrocatalysts with effective bifunctional activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has been a challenging task. To realize highly effective ORR and OER electrocatalysts, we present a hybrid catalyst, Co3O4-infiltrated La0.5Sr0.5MnO3-δ (LSM@Co3O4), synthesized using an electrospray and infiltration technique. This study expands the scope of the infiltration technique by depositing ~18 nm nanoparticles on unprecedented ~70 nm nano-scaffolds. The hybrid LSM@Co3O4 catalyst exhibits high catalytic activities for both ORR and OER (~7 times, ~1.5 times, and ~1.6 times higher than LSM, Co3O4, and IrO2, respectively) in terms of onset potential and limiting current density. Moreover, with the LSM@Co3O4, the number of electrons transferred reaches four, indicating that the catalyst is effective in the reduction reaction of O2 via a direct four-electron pathway. The study demonstrates that hybrid catalysts are a promising approach for oxygen electrocatalysts for renewable and sustainable energy devices.  相似文献   

15.
Oxygen dissociation on metal oxides is a key reaction step, limiting the efficiency of numerous technologies. The complexity of the multi‐step oxygen reduction reaction (ORR) makes it difficult to investigate the oxygen dissociation step independently. Direct observation of the oxygen dissociation process is described, quantitatively, on perovskites La0.6Sr0.4Co0.2Fe0.8O3‐δ and (La0.8Sr0.2)0.95MnO3±δ, using gas‐phase isotope‐exchange with a 1:1 16O2:18O2 ratio. Oxygen transport mechanisms between gas–surface reactions and surface–bulk exchange are deconvoluted. Our findings show that regardless of participation of lattice oxygen, La0.6Sr0.4Co0.2Fe0.8O3‐δ is better at oxygen dissociation than (La0.8Sr0.2)0.95MnO3±δ. Heteroexchange, involving lattice oxygen, dominates on La0.6Sr0.4Co0.2Fe0.8O3‐δ. In contrast, (La0.8Sr0.2)0.95MnO3±δ shows both homoexchange and heteroexchange, with the latter only happening above 600 °C. Using a 1:1 isotope mixture, a simple method is presented for separation of the oxygen dissociation step from the overall ORR.  相似文献   

16.
Increasing energy demands have stimulated intense research activities on reversible electrochemical conversion and storage systems with high efficiency, low cost, and environmental benignity. It is highly challenging but desirable to develop efficient bifunctional catalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A universal and facile method for the development of bifunctional electrocatalysts with outstanding electrocatalytic activity for both the ORR and OER in alkaline medium is reported. A mixture of Pt/C catalyst with superior ORR activity and a perovskite oxide based catalyst with outstanding OER activity was employed in appropriate ratios, and prepared by simple ultrasonic mixing. Nanosized platinum particles with a wide range of platinum to oxide mass ratios was realized easily in this way. The as‐formed Pt/C–oxide composites showed better ORR activity than a single Pt/C catalyst and better OER activity than a single oxide to bring about much improved bifunctionality (ΔE is only ≈0.8 V for Pt/C–BSCF; BSCF=Ba0.5Sr0.5Co0.8Fe0.2O3?δ), due to the synergistic effect. The electronic transfer mechanism and the rate‐determining step and spillover mechanism were two possible origins of such a synergistic effect. Additionally, the phenomenon was found to be universal, although the best performance could be reached at different platinum to oxide mass ratios for different oxide catalysts. This work thus provides an innovative strategy for the development of new bifunctional electrocatalysts with wide application potentials in high‐energy and efficient electrochemical energy storage and conversion.  相似文献   

17.
The replacement of scarce and expensive platinum species poses a challenge in fuel‐cell development. The design and synthesis of a novel type of CoII–N4 macrocyclic complex, [CoN4], based on the phenanthroline–indole macrocyclic ligand (PIM) is reported. This unique ligand allows the formation of mono‐ and dinuclear complexes with defined active sites that facilitate the direct four‐electron reduction of oxygen. Electrochemical measurements revealed that the [CoN4]/C (20 wt %) catalysts have a high activity and long‐term stability for the oxygen‐reduction reaction (ORR) under alkaline conditions, similar to the Pt/C catalyst. These structurally well‐defined complexes represent a nonprecious alternative to platinum species for future fuel‐cell applications.  相似文献   

18.
以碳纳米管(CNT)为原料,通过负载维生素B12,简单热解得到了一种氮掺杂碳纳米管(N/CNT)负载低含量Co3O4纳米颗粒的氧还原电催化剂(Co3O4@N/CNT)。得益于均匀分散的Co3O4纳米颗粒以及氮掺杂,Co3O4@N/CNT表现出了优异的氧还原催化性能,其半波电位达到了0.844 V(vs RHE),超越了商业Pt/C(0.820 V(vs RHE))。与Pt/C相比,基于Co3O4@N/CNT组装的锌-空气电池表现出了更优的放电性能和循环稳定性。  相似文献   

19.
以碳纳米管(CNT)为原料,通过负载维生素B12,简单热解得到了一种氮掺杂碳纳米管(N/CNT)负载低含量Co3O4纳米颗粒的氧还原电催化剂(Co3O4@N/CNT)。得益于均匀分散的Co3O4纳米颗粒以及氮掺杂,Co3O4@N/CNT表现出了优异的氧还原催化性能,其半波电位达到了0.844 V(vs RHE),超越了商业Pt/C(0.820 V(vs RHE))。与Pt/C相比,基于Co3O4@N/CNT组装的锌-空气电池表现出了更优的放电性能和循环稳定性。  相似文献   

20.
Atomically dispersed Zn–N–C nanomaterials are promising platinum‐free catalysts for the oxygen reduction reaction (ORR). However, the fabrication of Zn–N–C catalysts with a high Zn loading remains a formidable challenge owing to the high volatility of the Zn precursor during high‐temperature annealing. Herein, we report that an atomically dispersed Zn–N–C catalyst with an ultrahigh Zn loading of 9.33 wt % could be successfully prepared by simply adopting a very low annealing rate of 1° min?1. The Zn–N–C catalyst exhibited comparable ORR activity to that of Fe–N–C catalysts, and significantly better ORR stability than Fe–N–C catalysts in both acidic and alkaline media. Further experiments and DFT calculations demonstrated that the Zn–N–C catalyst was less susceptible to protonation than the corresponding Fe–N–C catalyst in an acidic medium. DFT calculations revealed that the Zn–N4 structure is more electrochemically stable than the Fe–N4 structure during the ORR process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号