首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three methoxy­‐ether and one methoxy‐­ether/crown‐ether derivatives of ptert‐butyl­tetrahomodioxa‐ and pR‐octahomo­tetraoxacalix­[4]­arenes (R = methyl, tert‐butyl, H) have been investigated. The first three compounds, 7,15,21,27‐tetra‐tert‐butyl‐29,30,31,32‐tetra­methoxy‐3,11‐dioxapenta­cyclo­[23.3.­1.15,9.113,17.119,23]­ditriaconta‐1(29),5,7,­9(30),­13,15,‐17(31),­19,21,23(32),25,27‐dodecaene, C50H68O6, 33,34,35,36‐tetra­methoxy‐7,15,23,31‐tetra­methyl‐3,11,19,27‐tetra­oxa­penta­cyclo[27.3.1.15,9.113,17.121,25]­hexa­tri­aconta‐1(33),5,7,9(34),13,15,­17(35),21,23,25(36),29,31‐dodecaene, C40H48O8, and 7,23‐di‐tert‐butyl‐33,34,35,36‐tetra­methoxy‐3,11,19,27‐tetraoxapenta­cyclo­[27.3.1.15,9.113,17.121,25]­hexatriaconta‐1(33),5,7,9(34),13,15,­17(35),‐ 21,23,25(36),29,31‐dodecaene, C44H56O8, in the partial‐cone or 1,2‐alternate conformations, present the common feature of methoxy‐­ether self‐inclusion, while the fourth, 42,43‐di­methoxy‐7,15,23,31‐tetra­methyl‐3,11,19,27,34,37,40‐heptaoxahexa­cyclo[15.15.9.15,9.121,25.013,41.029,33]­tritetra­conta‐5(42),6,8,13(41),­14,16,21(43),22,24,29(33),30,32‐dodecaene, C42H50O9, adopts the 1,3‐alternate conformation owing to the presence of a 1,3‐polyether chain.  相似文献   

2.
In the title dinuclear uranyl complex, (C18H38N2O6)[(UO2)2(NO3)4(OH)2]·H2O, each pair of uranyl ions in the two independent centrosymmetric dianionic dimers is bridged by the two hydroxide ions, with the nitrate ions ensuring equatorial hexagonal coordination. The di­hydro[2.2.2]­cryptand (4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]­hexa­cosane) dication presents an `in–in' conformation (endo protonation) and it is hydrogen bonded to the hydroxide ions, either directly or via a water mol­ecule, resulting in the formation of linear hydrogen‐bonded polymers.  相似文献   

3.
In bis­[1,1′,2,2′,3,3′,4,4′‐octa­methyl‐5‐(2‐pyridinio)‐5′‐(2‐pyri­dyl)­ferrocene] di‐μ3‐chloro‐hexadeca‐μ2‐chloro‐hexa­chloro­di‐μ4‐oxo‐di‐μ3‐oxo‐bis­[(η5N)‐1,2,3,4‐tetra­methyl‐5‐(2‐pyridyl)­cyclo­penta­dienyl]octauranium(IV) di­chloro­methane tetrasolvate, [Fe(C14H17N)(C14H16N)]2[U8Cl24O4(C14H16N)2]·4CH2Cl2, (I), two protonated Fe(cp*py)2 units [cp*py is tetra­methyl‐5‐(2‐pyridyl)­cyclo­penta­diene] form an ion pair with the dianionic centrosymmetric cluster U8Cl24O4(cp*py)2. The latter is the highest nuclearity assemblage in the chemistry of uranium (non‐uranyl) compounds reported to date.  相似文献   

4.
In the two compounds (borohydrido)(1,4,7,10,13,16‐hexa­oxacyclo­octa­decane‐κ6O)potassium, [K(BH4)(C12H24O6)], (I), and (borohydrido)(1,4,7,10,13,16‐hexa­oxa‐2,3:11,12‐di­benzo­cyclo­octa­deca‐2,11‐diene‐κ6O)(tetra­hydro­furan)­potassium, [K(BH4)(C4H8O)(C20H24O6)], (II), the K atom is bound to the six O atoms of the crown ether and to a tridentate borohydride group, with further coordination to a tetra­hydro­furan mol­ecule in (II). The alkali metal ion environment is thus distorted hexa­gonal–pyramidal in (I) and bipyramidal in (II).  相似文献   

5.
The [2.2]­para­cyclo­phane groups of the title compounds, chiral and meso‐bis­(tri­cyclo­[8.2.2.24,7]­hexa­deca‐4,6,10,12,13,15‐hexa­en‐5‐yl)­methane (the former as a racemate), C33H32, and meso‐bis­(tri­cyclo­[8.2.2.24,7]­hexa­deca‐4,6,10,12,13,15‐hexa­en‐5‐yl) sulfide, C32H30S, show the characteristic structural features of the parent compound [2.2]­para­cyclo­phane and the related compound di­methylbis([2.2]­para­cyclo­phan‐4‐yl)­silane, C34­H36­Si: the aromatic rings are puckered, resulting in a boat conformation. The planes of the four coplanar C atoms are slightly twisted with respect to each other. The Csp3—Csp3 bond lengths of the ethyl­ene bridges are elongated by the electronic and steric effects of the skeleton.  相似文献   

6.
In the title complex salt, tetra­kis[hexa­ammine­cobalt(III)] hexa­chloro­cadmate(II) bis­[aqua­tetra­chloro­thio­cyanato­cad­mate(II)] dichloride dihydrate, the discrete ions, i.e. [Co(NH3)6]3+, Cl, [CdCl6]4− (located on an inversion centre) and [CdCl4(SCN)(H2O)]3−, together with cocrystallized water mol­ecules, are assembled by means of a network of hydrogen‐bonding inter­actions. This is the first X‐ray structure determination of a hexa­amminecobalt(III) salt with two different complex chloro­cadmium anions.  相似文献   

7.
The structure of the title compound, 25‐ethyl‐2,5,12,15,22,28‐hexa­oxa‐25‐aza­tetra­cyclo­[27.4.0.06,11.016,21]­tri­tria­conta‐1(29),6(11),7,9,16(21),17,19,30,32‐nona­ene, C28H33NO6, does not exhibit a binding cavity for cations, but is collapsed in on itself. The conformation is unique among known tri­benzo‐21‐crown‐7 structures, and may be a result of intermolecular (C—H?π) and intramolecular (C—H?O) hydrogen bonding.  相似文献   

8.
The novel PtII–dibenzo‐18‐crown‐6 (DB18C6) title complex, μ‐[tetrakis­(thio­cyanato‐S)­platinum(II)]‐N:N′‐bis{[2,5,8,­15,18,21‐hexa­oxa­tri­cyclo­[20.4.0.19,14]­hexa­cosa‐1(22),9(14),10,12,23,25‐hexaene‐κ6O]­potassium(I)}, [K(C20H24O6)]2[Pt(SCN)4], has been isolated and characterized by X‐ray diffraction analysis. The structure analysis shows that the complex displays a quasi‐one‐dimensional infinite chain of two [K(DB18C6)]+ complex cations and a [Pt(SCN)4]2? anion, bridged by K+?π interactions between adjacent [K(DB18C6)]+ units.  相似文献   

9.
In methyl­aminium 4′,7‐dihydroxy­isoflavone‐3′‐sulfonate dihydrate, CH6N+·C15H9O7S·2H2O, 11 hydrogen bonds exist between the methyl­aminium cations, the iso­flavone‐3′‐sulfonate anions and the solvent water mol­ecules. In hexa­aqua­iron(II) bis­(4′,7‐diethoxy­isoflavone‐3′‐sulfonate) tetra­hydrate, [Fe(H2O)6](C19H17O7S)2·4H2O, 12 hydrogen bonds exist between the centrosymmetric [Fe(H2O)6]2+ cation, the isoflavone‐3′‐sulfonate anions and the solvent water mol­ecules. Additional π–π stacking inter­actions generate three‐dimensional supramolecular structures in both compounds.  相似文献   

10.
The title compound, 5‐methoxy­spiro­[tetra­cyclo­[8.8.1.03,8.012,17]­nonadeca‐3,5,7,12,14,16‐hexene‐19,2′‐[1,3]­dioxolane], C22H24O3, exhibits a twin‐chair conformation with the aromatic rings overlying each other. Comparison of the dihedral angle between these two rings with those from previously reported [3.3]­ortho­cyclo­phanes of this type suggests the presence of a weak attractive charge‐transfer interaction between the two, different, stacked arenes.  相似文献   

11.
The title compound, 13,21,35,43‐tetra­methyl‐3,6,9,17,25,28,31,39,46,49‐decaoxahepta­cyclo­[21.21.3.311,33.02,41.010,15.019,24.032,37]pentaconta‐1,10,12,14,19,21,23,32,34,36,41,43‐dodecaene, C44H52O10, differs from previously reported 1,3‐bridged calix­[4]­arene–bis‐crown compounds in having an enlarged calixarene ring and shorter polyoxy­ethyl­ene bridges. The cavity is partly filled by the bridges.  相似文献   

12.
X‐ray data were obtained for the monoclinic polymorph of rac‐5,7,7,12,12,14‐hexa­methyl‐1,4,8,11‐tetraazonia­cyclo­tetra­decane bis­(hexa­fluoro­germanate) tetrahydrate, (C16H40N4)[GeF6]2·4H2O. The tetra­aza‐macrocyclic cations lie across inversion centers in space group P21/c. Water mol­ecules and [GeF6]2− anions form zigzag chains, which alternate in a three‐dimensional network with the macrocyclic cations. The structure is sustained by multiple hydrogen bonds.  相似文献   

13.
In the title compound, tetrakis­(tetra­hydro­furan)­lithium(I) tri‐μ‐phenyl­thiol­ato‐bis­[tris­(phenyl­thiol­ato)­titanate(IV)], [Li(C4H8O)4][Ti2(C6H5S)9], (I), the central structural motif of the [Ti2(SC6H5)9]? anion features a face‐sharing bi‐octa­hedron. The charge is balanced with a [Li(C4H8O)4]+ cation. The asymmetric unit contains Ti, Li and a heavily disordered tetra­hydro­furan mol­ecule on a threefold axis, and two terminal and a bridging thio­phenolate moiety and a slightly disordered tetra­hydro­furan mol­ecule on general positions.  相似文献   

14.
The crystals of the title salt, 6,21‐di­aza‐3,9,18,24‐tetraazoniatri­cyclo­[22.2.2.211,14]­triaconta‐11,13,24,26(1),27,29‐hexaene benzene‐1,2,4,5‐tetra­carboxyl­ate(4?) hexahydrate, C24H42N64+·C10H2O84?·6H2O, are formed by the intermolecular interaction of a macrocyclic hex­amine with a mol­ecule of C6H2(COOH)4 in aqueous solution. Both the cation and the anion are on inversion centres. Hydro­gen bonds are formed between the four ammonium cations in the hex­amine and the four carboxyl­ate anions in the aromatic acid. Stacks exist along the crystallographic a axis in the solid state. The water mol­ecules also take part in a hydrogen‐bonding network which joins these stacks together.  相似文献   

15.
Two new salts of the cation [CuI(dmp)2]+ (dmp is 2,9‐dimeth­yl‐1,10‐phenanthroline, C14H12N2), namely bis­[bis­(2,9‐dimeth­yl‐1,10‐phenanthroline‐κ2N,N′)copper(I)] bis­(hexa­fluorophos­phate) hemi[bis­(4‐pyridylmethyl­idene)hydrazine] acetonitrile solvate, [Cu(C14H12N2)2]2(PF6)2·0.5C12H10N4·C2H3N or [Cu(dmp)2]2(PF6)2·0.5(bpmh)·CH3CN [bpmh is bis­(4‐pyridylmethyl­idene)hydrazine, C12H10N4], (I), and bis­(2,9‐dimeth­yl‐1,10‐phenanthroline‐κ2N,N′)copper(I) dicyanamide, [Cu(C14H12N2)2](C2N3) or [Cu(dmp)2][N(CN)2], (II), are reported. The Cu—N bond lengths and the distortion from idealized tetra­hedral geometry of the dmp ligands are discussed and compared with related compounds. The bpmh molecule in (I) is π–π stacked with a dmp ligand at a distance of 3.4 Å, rather than coordinated to the metal atom. The molecule lies across an inversion center in the crystal. In (II), the normally coordinated dicyanamide mol­ecule is present as an uncoordinated counter‐ion.  相似文献   

16.
The supramolecular structures of the title compounds, 2‐phenyl‐5‐p‐tolyl‐1,5,6,10b‐tetra­hydro­pyrazolo­[1,5‐c]quinazoline, C23H21N3, (I), 5‐(4‐bromo­phenyl)‐2‐phenyl‐1,5,6,10b‐tetra­hydro­pyrazolo­[1,5‐c]­quinazoline, C22H18BrN3, (II), 2‐(4‐chlorophenyl)‐5‐phenyl‐1,5,6,10b‐tetrahydropyrazolo[1,5‐c]quinazoline, C22H18ClN3, (III), and 5‐(4‐bromo­phenyl)‐2‐(4‐chlorophenyl)‐1,5,6,10b‐tetrahydropyrazolo[1,5‐c]quinazoline, C22H17BrClN3, (IV), are of two general types. Compounds (I), (II) and (III) form base‐paired dimers via N—H?N hydrogen bonds, where (I) and (II) are isomorphous, while in (IV), there are no conventional hydrogen bonds.  相似文献   

17.
Both title compounds, bis­[tris(2‐amino­ethyl)­amine]­nickel(II) dichloride, [Ni(tren)2]Cl2, (I), and bis­[tris(2‐amino­ethyl)­amine]­nickel(II) tetra­thio­tungstate, [Ni(tren)2]WS4, (II), contain the [Ni(tren)2]2+ cation [tren is tris(2‐amino­ethyl)­amine, C6H18N4]. The tren mol­ecule acts as a tridentate ligand around the central Ni atom, with the remaining primary amine group not bound to the central atom. In (I), Ni2+ is located on a centre of inversion surrounded by one crystallographically independent tren mol­ecule. In the [Ni(tren)2]2+ cation of (II), the Ni atom is bound to two crystallographically independent tren mol­ecules. The Ni atoms in the [Ni(tren)2]2+ complexes are in a distorted octahedral environment consisting of six N atoms from the chelating tren mol­ecules. The counter‐ions are chloride anions in (I) and the tetrahedral [WS4]2? anion in (II). Hydro­gen bonding is observed in both compounds.  相似文献   

18.
Two complexes between mono‐deprotonated calix­[4]­arene and Et3HN+ are reported. The first, triethylammonium 26,27,28‐tri­hydroxy­penta­cyclo­[19.3.1.13,7.19,13.115,19]­octacosa‐1(25),3,5,7(28),9,11,13(27),15,17,19(26),21,23‐dodecaen‐25‐olate, C6H16N+·C28H23O4?, comprises only the cationic and anionic species, whereas the second, tris­(triethyl­ammonium) tris[26,27,28‐tri­hydroxy­penta­cyclo­[19.3.1.13,7.19,13.115,19]­octacosa‐1(25),3,5,7(28),9,11,13(27),15,17,19(26),21,23‐dodecaen‐25‐olate] aceto­nitrile solvate, 3C6H16N+·3C28H23O4?·C2H3N, comprises one aceto­nitrile solvent mol­ecule for three such units. In both cases, the units are stacked in columns so that the ammonium cation is hydrogen bonded to a phenolic or phenolate O atom of one mol­ecule and included in the hydro­phobic cavity of another neighbouring calixarene. The short contacts present indicate that cation?π and C—H?π interactions are likely to be involved in the inclusion phenomena.  相似文献   

19.
The title compound, (C16H38N4)[Fe(CN)5(NO)]·2H2O, contains one [Fe(CN)5(NO)]2− dianion, two half [H2teta]2+ dications (teta is 5,7,7,12,14,14‐hexa­methyl‐1,4,8,11‐tetra­aza­cyclo­tetra­decane), each lying about an independent inversion centre, and two solvent water mol­ecules, all of which are held together by hydrogen bonds to form a three‐dimensional supramolecular framework.  相似文献   

20.
The preparation and crystal structures of (4,11‐di­benzyl‐1,4,8,11‐tetra­aza­bi­cyclo­[6.6.2]­hexa­decane‐κ4N)copper(I) hexa‐fluorophosphate, [Cu(C26H38N4)]PF6, and acetonitrile(4,11‐dibenzyl‐1,4,8,11‐tetraazabicyclo[6.6.2]hexadecane‐κ4N)‐copper(II) bis(hexafluorophosphate), [Cu(C2H3N)(C26H38‐N4)](PF6)2, are described. The CuI ion is tetracoordinated in a very distorted tetrahedron, while the CuII analogue is pentacoordinated in a square pyramid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号