首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The two components of the title heterodimer, C17H21NO2·C8H5NO2, are linked end‐to‐end via O—H⋯O(=C) and C—H⋯O(=C) hydrogen‐bond inter­actions. Additional lateral C—H⋯O inter­actions link the dimers in a side‐by‐side fashion to produce wide infinite mol­ecular ribbons. Adjacent ribbons are inter­connected viaπ–π stacking and C—H⋯π(arene) inter­actions. This structure represents the first evidence of robust hydrogen‐bond formation between the moieties of pyridin‐4(1H)‐one and benzoic acid.  相似文献   

2.
In ethyl N‐[2‐(hydroxy­acetyl)phenyl]carbamate, C11H13NO4, all of the non‐H atoms lie on a mirror plane in the space group Pnma; the mol­ecules are linked into simple chains by a single C—H⋯O hydrogen bond. The mol­ecules of ethyl N‐[2‐(hydroxy­acetyl)‐4‐iodo­phenyl]carbamate, C11H12INO4, are linked into sheets by a combination of O—H⋯I and C—H⋯O hydrogen bonds and a dipolar I⋯O contact. Ethyl N‐­[2‐(hydroxy­acetyl)‐4‐methyl­phenyl]carbamate, C12H15NO4, crystallizes with Z′ = 2 in the space group P; pairs of mol­ecules are weakly linked by an O—H⋯O hydrogen bond and these aggregates are linked into chains by two independent aromatic π–π stacking inter­actions.  相似文献   

3.
In 3,4‐di‐2‐pyridyl‐1,2,5‐oxadiazole (dpo), C12H8N4O, each mol­ecule resides on a twofold axis and inter­acts with eight neighbours via four C—H⋯N and four C—H⋯O inter­actions to generate a three‐dimensional hydrogen‐bonded architecture. In the perchlorate analogue, 2‐[3‐(2‐pyrid­yl)‐1,2,5‐oxadiazol‐4‐yl]pyridinium perchlorate, C12H9N4O+·ClO4 or [Hdpo]ClO4, the [Hdpo]+ cation is bisected by a crystallographic mirror plane, and the additional H atom in the cation is shared by the two pyridyl N atoms to form a symmetrical intra­molecular N⋯H⋯N hydrogen bond. The cations and perchlorate anions are linked through C—H⋯O hydrogen bonds and π–π stacking inter­actions to form one‐dimensional tubes along the b‐axis direction.  相似文献   

4.
The mol­ecule of the title compound, 2,3‐F2‐4‐(CHO)C6H2B(OH)2 or C7H5BF2O3, contains a formyl group coplanar with the benzene ring. The boronic acid group is twisted with respect to the benzene ring plane. The mol­ecules are organized into infinite chains via inter­molecular O—H⋯O hydrogen bonds. These chains are additionally connected via strong O—H⋯O hydrogen bonds, producing a folded layer structure perpendicular to the a axis. These layers are paired due to B⋯F inter­actions.  相似文献   

5.
Mol­ecules of 1‐acetyl‐3‐ferrocenyl‐5‐methyl‐1H‐pyrazole, [Fe(C5H5)(C11H11N2O)], form a centrosymmetric dimer generated by a combination of one C—H⋯π(pyrazole) and one C—H⋯π(cyclo­penta­dienyl) inter­action. The dimers are linked by C—H⋯π inter­actions, involving the pyrazole rings as acceptors, into layers parallel to (10). Mol­ecules of 1‐acetyl‐5‐ferrocenyl‐3‐(2‐pyrid­yl)‐1H‐pyrazole, [Fe(C5H5)(C15H12N3O)], are linked by C—H⋯O inter­actions into a chain running in the [010] direction. Two chains of this type passing through each unit cell are connected by O⋯π(pyridyl) inter­actions into an [010] double chain.  相似文献   

6.
The asymmetric unit of the title compound, C10H8O2, contains two planar symmetry‐independent mol­ecules linked by an O—H⋯O hydrogen bond. In the crystal structure, mol­ecules are linked into infinite chains of rings, formed by a combination of O—H⋯O and C—H⋯O hydrogen bonds, and additionally reinforced by π–π stacking inter­actions. Adjacent chains are connected by weak C—H⋯π inter­actions.  相似文献   

7.
Cocrystallization of 1,1′‐(p‐phenylene)dipyridin‐4(1H)‐one (4,4′‐dpy) and terephthalic acid (tpa) affords the hydrogen‐bonded 1:1 title complex, C16H12N2O2·C8H6O4. Both mol­ecules are symmetrically disposed about independent symmetry centers. Strong O—H⋯O hydrogen bonds between tpa carboxyl groups and 4,4′‐dpy carbonyl groups produce one‐dimensional zigzag infinite chains. Each chain is linked to four surrounding chains via weak C—H⋯O inter­actions, resulting in a three‐dimensional mol­ecular framework.  相似文献   

8.
The two title chromene compounds, 3,3a‐dihydrocyclo­penta­[b]chromen‐1(2H)‐one, C16H12O2, (I), and 2‐(2‐hydroxy­benzyl­idene)‐3,3a‐dihydrocyclo­penta­[b]chromen‐1(2H)‐one, C19H14O3, (II), have been determined in the monoclinic space group P21/n. Compound (I) is mainly stabilized by C—H⋯π inter­actions. Compound (II) is linked into infinite one‐dimensional chains with a C(3) motif via inter­molecular O—H⋯O hydrogen bonds. The inter­molecular C—H⋯π and π–­π inter­actions also play key roles in stabilizing the crystal packing. Two intra­molecular C—H⋯O hydrogen bonds with S(5) motifs were detected in (II).  相似文献   

9.
In the title compound, (5‐oxo‐3a,6a‐diphenyl­perhydro­imidazo[4,5‐d]imidazol‐2‐ylidene)oxonium hydrogen sulfate, C16H15N4O2+·HSO4, the asymmetric unit contains a hydrogen sulfate anion and a 3a,6a‐diphenyl­glycoluril oxonium cation. The hydrogen sulfate anion is joined to the oxonium cation via a strong O—H⋯O hydrogen bond (H⋯O = 1.69 Å). The crystal packing is mainly dominated by inter­actions involving the hydrogen sulfate anion. The diphenyl­glycoluril oxonium cations also self‐assemble through N—H⋯O hydrogen bonds, forming mol­ecular chains along the [001] vector. Four intra­molecular C—H⋯N hydrogen bonds are observed, having an S(5) motif.  相似文献   

10.
dl‐Proline     
In the structure of dl ‐proline, C5H9NO2, the mol­ecules are connected via classical inter­molecular N—H⋯O hydrogen bonds involving the amine and carbox­yl groups [N⋯O = 2.7129 (15) and 2.8392 (16) Å], and form chains along the b‐axis direction and parallel to (01). The chains are linked into sheets via weak non‐classical hydrogen bonds. The conformation of the mol­ecule and its packing are notably different from the monohydrated dl ‐proline form.  相似文献   

11.
The title mol­ecule, C2H6OSe, has a trigonal–pyramidal structure analogous to that of its sulfur analog, dimethyl sulfoxide (DMSO). The Se—O distance in dimethyl selenoxide (DMSeO) is 1.6756 (16) Å [versus S—O of 1.531 (5) Å in DMSO], consistent with a highly polar σ bond. In the solid state, the mol­ecules of DMSeO are linked into centrosymmetric dimers formed by two C—H⋯O hydrogen bonds. These dimers further aggregate into a ladder‐like supramolecular network via two additional inter­molecular C—H⋯O inter­actions. As a result, each O atom of DMSeO acts as an acceptor of three hydrogen bonds.  相似文献   

12.
In the lattice of the title compound (systematic name: 5,6,7‐trihydroxy‐4′‐meth­oxy­isoflavone monohydrate), C16H12O6·H2O, the isoflavone mol­ecules are linked into chains through R43(17) motifs composed via O—H⋯O and C—H⋯O hydrogen bonds. Centrosymmetric R42(14) motifs assemble the chains into sheets. Hydrogen‐bonding and aromatic π–π stacking inter­actions lead to the formation of a three‐dimensional network structure.  相似文献   

13.
The mol­ecules of 2‐benzoyl‐1‐benzofuran, C15H10O2, (I), inter­act through double C—H⋯O hydrogen bonds, forming dimers that are further linked by C—H⋯O, C—H⋯π and π–π inter­actions, resulting in a three‐dimensional supramolecular network. The dihedral angle between the benzo­yl and benzofuran fragments in (I) is 46.15 (3)°. The mol­ecules of bis­(5‐bromo‐1‐benzofuran‐2‐yl) ketone, C17H8Br2O3, (II), exhibit C2 symmetry, with the carbon­yl group (C=O) lying along the twofold rotation axis, and are linked by a combination of C—H⋯O and C—H⋯π inter­actions and Br⋯Br contacts to form sheets. The stability of the mol­ecular packing in 3‐mesit­yl‐3‐methyl­cyclo­but­yl 3‐methyl­naphtho[1,2‐b]furan‐2‐yl ketone, C28H28O2, (III), arises from C—H⋯π and π–π stacking inter­actions. The fused naphthofuran moiety in (III) is essentially planar and makes a dihedral angle of 81.61 (3)° with the mean plane of the trimethyl­benzene ring.  相似文献   

14.
The molecule of the title compound, C18H24N2O2, resides on a crystallographic inversion centre. The mol­ecule adopts a transoid conformation with respect to the central C—C single bond and is in the meso form. A polarimetric study of the compound did not show any optical activity, indicating that the compound is a racemic mixture entirely consistent with the centrosymmetric space group. In the mol­ecule, there is one intra­molecular N—H⋯O inter­action, resulting in the formation of a five‐membered ring. In the crystal structure, inter­molecular O—H⋯N and C—H⋯O inter­actions are also observed. These inter­actions form an R22(9) ring and one‐dimensional linear chains of edge‐fused rings running parallel to the [010] direction, which stabilize the crystal packing.  相似文献   

15.
In 2′,5′‐dimethyl‐p‐terphenyl, C20H18, which displays pseudosymmetry (the true space group is Pna21, but less satisfactory refinement can also be achieved in Pbcn), the mol­ecules are linked into chains by two short C—H⋯π inter­actions to the centroid of the central ring. In 2′,5′‐bis­(bromo­meth­yl)‐p‐terphenyl, C20H16Br2, the polar CH2Br groups cause mol­ecules to aggregate via C—H⋯Br and Br⋯Br inter­actions, forming a layer structure, in which the phenyl rings project outwards from the central, more polar, region.  相似文献   

16.
4,4′‐Bipyridine cocrystallizes with 3‐hydroxy‐2‐naphthoic acid in a 1:2 ratio to give a centrosymmetric three‐component supra­molecular adduct, namely 3‐hydroxy‐2‐naphthoic acid–4,4′‐bipyridine (2/1), C11H8O3·0.5C10H8N2, in which 4,4′‐bipyridine is located on an inversion center. The pyridine–carboxylic acid heterosynthon generates an infinite one‐dimensional hydrogen‐bonded chain viaπ–π inter­actions between naphthyl and 4,4′‐bipyridine groups. The one‐dimensional chains are further assembled into a three‐dimensional network by weak C—H⋯π inter­actions between pyridyl and naphthyl rings, and C—H⋯O inter­actions between 3‐hydroxy‐2‐naphthoic acid mol­ecules.  相似文献   

17.
The structural analysis of deacetyl­cephalothin [systematic name: (6R,7R)‐3‐hydroxy­methyl‐8‐oxo‐7‐(2‐thio­phen‐2‐yl­acetyl­amino)‐5‐thia‐1‐aza­bicyclo­[4.2.0]oct‐2‐ene‐2‐carboxylic acid], C14H14N2O5S2, shows that the geometry of the central bicyclic moiety is close to the geometry exhibited by other biologically active cephalosporin antibiotics. The mol­ecules are arranged in a helical chain running parallel to the 21 axis via a strong O—H⋯O hydrogen bond. The main helices are zipped together via N—H⋯O inter­actions, forming infinite layers. The supramolecular architecture is stabilized by O—H⋯S and C—H⋯O hydrogen bonds.  相似文献   

18.
The asymmetric unit of the title compound, {[Pb(C4O4)(C12H8N2)2(H2O)]·2H2O}n, contains one squarate dianion, two phenanthroline (phen) ligands and one aqua ligand all coordinated to Pb, and two solvent water mol­ecules. The eight‐coordinate Pb metal ion displays a distorted bicapped trigonal–prismatic coordination environment, defined by three squarate O atoms, four N atoms from two chelating phen ligands and one O atom from the coordinated water mol­ecule. The crystal structure contains chains of squarate‐1,2,3‐bridged PbII ions running in the [010] direction. These polymeric chains are linked to one another via offset face‐to‐face π–π inter­actions between the phen ligands, which lead to a two‐dimensional network extending along the (001) plane. The crystal structure is also stabilized by O—H⋯O inter­molecular hydrogen‐bond inter­actions, forming a three‐dimensional network.  相似文献   

19.
The title compound [systematic name: 5‐hydroxy‐2‐(3‐hydroxy‐4,5‐dimethoxy­phenyl)‐3,6,7‐trimethoxy‐4H‐chromen‐4‐one], C20H20O9, was isolated from the seeds of Cleom viscosa Linn. Two independent mol­ecules (A and B) are present in the asymmetric unit with almost similar conformations. The dihedral angles between the fused chromene ring system and the benzene ring bonded to it in mol­ecules A and B are 4.2 (1) and 12.7 (1)°, respectively. The hydroxy O atoms are involved in intra­molecular hydrogen bonding. The mol­ecules are linked by C—H⋯O and O—H⋯O inter­actions into chains of edge‐fused R33(22) rings. Aromatic π–π and weak C—H⋯π(arene) inter­actions are also observed.  相似文献   

20.
The structures of the three title isomers, namely 4‐(2‐methyl­anilino)pyridine‐3‐sulfonamide, (I), 4‐(3‐methyl­anilino)pyridine‐3‐sulfonamide, (II), and 4‐(4‐methyl­anilino)pyridine‐3‐sulfonamide, (III), all C12H13N3O2S, differ in their hydrogen‐bonding arrangements. In all three mol­ecules, the conformation of the 4‐amino­pyridine‐3‐sulfon­amide moiety is conserved by an intra­molecular N—H⋯O hydrogen bond and a C—H⋯O inter­action. In the supra­mol­ecular structures of all three isomers, similar C(6) chains are formed via inter­molecular N—H⋯N hydrogen bonds. N—H⋯O hydrogen bonds lead to C(4) chains in (I), and to R22(8) centrosymmetric dimers in (II) and (III). In each isomer, the overall effect of all hydrogen bonds is to form layer structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号