首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using molecular dynamic simulation (MDS), effects of chirality and Van der Waals interaction on Young's modulus, elastic compressive modulus, bending, tensile, and compressive stiffness, and critical axial force of double-walled carbon nanotube (DWCNT) and its inner and outer tubes are considered. Achieving the highest safety factor, mechanical properties have been investigated under applied load on both inner and outer tubes simultaneously and on each one of them separately. Results indicate that as a compressive element, DWCNT is more beneficial than single-walled carbon nanotube (SWCNT) since it carries two times higher compression before buckling. Except critical axial pressure and tensile stiffness, in other parameters zigzag DWCNT shows higher amounts than armchair type. Outer tube has lower strength than inner tube; therefore, most reliable design of nanostructures can be attained if the mechanical properties of outer tube taken as the properties of DWCNT.  相似文献   

2.
In this paper, the buckling behavior and critical axial pressure of double-walled carbon nanotubes (DWCNTs) with surrounding elastic medium are investigated. A double-shell (circular cylindrical shell) model is presented and the effects of surrounding elastic medium on the outer tube and the van der Waals forces between two adjacent tubes are taken into account. The analysis and the numerical solution method are based on the classical theory of plates and shells and the Galerkin method. Equations are derived for the critical axial forces and pressures of DWCNTs; the critical axial forces and pressures are calculated for different axial half sine wavenumbers and circumferential sine wavenumbers and compared with those for single-walled carbon nanotubes (SWCNTs).Results indicate that the critical axial force of a DWCNT is higher than that of an SWCNT, but the critical axial pressure of a DWCNT is lower than the critical axial pressure of a SWCNT. Although the critical axial force of a DWCNT decreases as the axial half sine wavenumbers increase, it rises as the circumferential sine wavenumbers increase.  相似文献   

3.
A nonlocal Levinson beam model is developed to study the free vibrations of a zigzag single-walled carbon nanotube (SWCNT) in thermal environments. The equivalent Young’s modulus and shear modulus for a zigzag SWCNT are derived using an energy-equivalent model. The present study illustrates that the vibration characteristics of an SWCNT are strongly dependent on the temperature change and on the chirality of a zigzag carbon nanotube. The investigation of the chirality and temperature effects on free vibration of carbon nanotubes may be used as a useful reference for the application and the design of nanoelectronic and nanodrive devices, nano-oscillators, and nanosensors, in which carbon nanotubes act as basic elements.  相似文献   

4.
In this paper,a novel double-wall carbon nanotube(DWCNT) with both edge and screw dislocations is studied by using the molecular dynamics(MD) method.The differences between two adjacent tubule indexes of armchair and zigzag nanotubes are determined to be 5 and 9,respectively,by taking into account the symmetry,integrality,and thermal stability of the composite structures.It is found that melting first occurs near the dislocations,and the melting temperatures of the dislocated armchair and zigzag DWCNTs are around 2600 K-2700 K.At the premelting temperatures,the shrink of the dislocation loop,which is comprised of edge and screw dislocations,implies that the composite dislocation in DWCNTs has self-healing ability.The dislocated DWCNTs first fracture at the edge dislocations,which induces the entire break in axial tensile test.The dislocated DWCNTs have a smaller fracture strength compared to the perfect DWCNTs.Our results not only match with the dislocation glide of carbon nanotubes(CNTs) in experiments,but also can free from the electron beam radiation under experimental conditions observed by the high resolution transmission electron microscope(HRTEM),which is deemed to cause the motion of dislocation loop.  相似文献   

5.
《Current Applied Physics》2015,15(3):342-351
This work has presented first-principle self-consistent field crystal orbital studies of combined carbon nanowires (CNWs) consisted of linear carbon chains encapsulated in zigzag double-walled carbon nanotubes (DWCNTs). The geometrical structures, relative stabilities and electronic properties of CNWs made of DWCNTs and single-walled carbon nanotubes are investigated and compared in details. As adding second outer tube, enhanced stabilities of the CNWs made of DWCNTs are detected from viewpoint of energies. The calculated band structures show that all CNWs studied are metals with zero energy gap. It is found that the atomic density of the carbon chain and the size of the tube are important to modulate the electronic properties of the CNWs. Since chemical bonding is not formed among the constitute parts of CNWs, the interaction among the subsections are analyzed based on orbital hybridization and charge transfer, which both play the leading roles on the energies and band structures of the CNWs. The computed charge carrier mobility of encapsulated carbon chain is much larger than that of the free carbon chain, reaches 105–106 cm2 V−1 at room temperature. The filling carbon chain can be considered as one of the narrowest one-dimensional electronic nanowires covered by outer DWCNT. Moreover, the elastic properties of CNWs are studied based on the results of Young's modulus.  相似文献   

6.
In the current work, the nonlinear vibration of an embedded double-walled carbon nanotube (DWCNT) aroused by nonlinear van der Waals (vdW) interaction forces from both surrounding medium and adjacent tubes is studied. Using both Euler–Bernoulli and Timoshenko beam models, the relation between deflection amplitudes and resonant frequencies of the DWCNT is derived through harmonic balance method. It is found that the nonlinear vdW forces from the surrounding medium result in noncoaxial vibration of the embedded DWCNT. The noncoaxial vibration includes both uni-directional and bi-directional vibration modes. It is found that the surrounding matrix has more prominent effect on the uni-directional vibration in comparison to the bi-directional vibration. The axial load effect on the vibrational behavior of the embedded DWCNT is also discussed. Due to the influence of the surrounding polymer, the prediction on the resonant frequencies of embedded CNTs is quite different from that for free-standing CNTs. A softening behavior for the deflection amplitude-resonant frequency relation is observed for the first time in the bi-directional vibration of the embedded DWCNT, which can only be obtained using the Timoshenko beam theory.  相似文献   

7.
In this paper, the viscoelastic wave propagation in an embedded viscoelastic single-walled carbon nanotube (SWCNT) is studied based on the nonlocal strain gradient theory. The characteristic equation for the viscoelastic wave in SWCNTs is derived. The emphasis is placed on the influence of the tube diameter on the viscoelastic wave dispersion. A blocking diameter is observed, above which the wave could not propagate in SWCNTs. The results show that the blocking diameter is greatly dependent on the damping coefficient, the nonlocal and the strain gradient length scale parameters, as well as the Winkler modulus of the surrounding elastic medium. These findings may provide a prospective application of SWCNTs in nanodevices and nanocomposites.  相似文献   

8.
The nonlocal Timoshenko beam theories (TBTs), based on the Reissner mixed variation theory (RMVT) and principle of virtual displacement (PVD), are derived for the free vibration analysis of a single-walled carbon nanotube (SWCNT) embedded in an elastic medium and with various boundary conditions. The strong formulations of the nonlocal TBTs are derived using Hamilton's principle, in which Eringen's nonlocal constitutive relations are used to account for the small-scale effect. The interaction between the SWCNT and its surrounding elastic medium is simulated using the Winkler and Pasternak foundation models. The frequency parameters of the embedded SWCNT are obtained using the differential quadrature (DQ) method. In the cases of the SWCNT without foundations, the results of RMVT- and PVD-based nonlocal TBTs converge rapidly, and their convergent solutions closely agree with the exact ones available in the literature. Because the highest order with regard to the derivatives of the field variables used in the RMVT-based nonlocal TBT is lower than that used in its PVD-based counterpart, the former is more efficient than the latter with regard to the execution time. The former is thus both faster and obtains more accurate solutions than the latter for the numerical analysis of the embedded SWCNT.  相似文献   

9.
Nonlinear free vibration analysis of curved double-walled carbon nanotubes (DWNTs) embedded in an elastic medium is studied in this study. Nonlinearities considered are due to large deflection of carbon nanotubes (geometric nonlinearity) and nonlinear interlayer van der Waals forces between inner and outer tubes. The differential quadrature method (DQM) is utilized to discretize the partial differential equations of motion in spatial domain, which resulted in a nonlinear set of algebraic equations of motion. The effect of nonlinearities, different end conditions, initial curvature, and stiffness of the surrounding elastic medium, and vibrational modes on the nonlinear free vibration of DWCNTs is studied. Results show that it is possible to detect different vibration modes occurring at a single vibration frequency when CNTs vibrate in the out-of-phase vibration mode. Moreover, it is observed that boundary conditions have significant effect on the nonlinear natural frequencies of the DWCNT including multiple solutions.  相似文献   

10.
In the present paper, the coupling effect of transverse magnetic field and elastic medium on the longitudinal wave propagation along a carbon nanotube (CNT) is studied. Based on the nonlocal elasticity theory and Hamilton's principle, a unified nonlocal rod theory which takes into account the effects of small size scale, lateral inertia and radial deformation is proposed. The existing rod theories including the classic rod theory, the Rayleigh-Love theory and Rayleigh-Bishop theory for macro solids can be treated as the special cases of the present model. A two-parameter foundation model (Pasternak-type model) is used to represent the elastic medium. The influence of transverse magnetic field, Pasternak-type elastic medium and small size scale on the longitudinal wave propagation behavior of the CNT is investigated in detail. It is shown that the influences of lateral inertia and radial deformation cannot be neglected in analyzing the longitudinal wave propagation characteristics of the CNT. The results also show that the elastic medium and the transverse magnetic field will also affect the longitudinal wave dispersion behavior of the CNT significantly. The results obtained in this paper are helpful for understanding the mechanical behaviors of nanostructures embedded in an elastic medium.  相似文献   

11.
This paper is concerned with the characteristics of wave propagation in double-walled carbon nanotubes (DWCNTs). The DWCNTs is simulated with a Timoshenko beam model based on the nonlocal continuum elasticity theory, referred to as an analytically nonlocal Timoshenko-beam (ANT) model. The governing equations of the DWCNTs beam consist of a set of four equations that are derived from the variational principle of the beam with high-order boundary conditions at the both ends, in which the effects of the nano-scale nonlocality and the van der Waals interaction between inner and outer tubes are inclusive. The characteristics of the wave propagation in the DWCNTs beam were analyzed with the new ANT model proposed and the comparisons with the partially nonlocal Timoshenko-beam (PNT) models in publication were made in details. The results show that the nonlocal effects of the ANT model proposed in the present study on the wave propagations are more significant because it is in stronger stiffness enhancement to the DWCNTs beam.  相似文献   

12.
In this Letter, a theoretical analysis of the resonant vibration of double-walled carbon nanotubes (DWCNTs) and the DWCNTs embedded in an elastic medium is presented based on Euler-Bernoulli beam model and Winkler spring model. The vibration modes of DWCNTs are quite different from those of single-walled carbon nanotubes (SWCNTs). The resonant vibrations of DWCNTs are found to have in-phase and anti-phase modes, in which the deflections of the inner and outer nanotubes occur in the same and opposite directions, respectively. For the vibration of DWCNTs with the same harmonic numbers, the resonant frequencies of anti-phase mode are larger than the ones of in-phase mode. Moreover, influence of the surrounding medium on the resonant vibrations is investigated using the Winkler spring model. The results show that surrounding medium makes a strong impact on the vibration frequencies of in-phase mode, but little on those of anti-phase mode.  相似文献   

13.
The magnetic properties of carbon nanotubes and their mechanical behaviour in a magnetic field have attracted considerable attention among the scientific and engineering communities. This paper reports an analytical approach to study the effect of a longitudinal magnetic field on the transverse vibration of a magnetically sensitive double-walled carbon nanotube (DWCNT). The study is based on nonlocal elasticity theory. Equivalent analytical nonlocal double-beam theory is utilised. Governing equations for nonlocal transverse vibration of the DWCNT under a longitudinal magnetic field are derived considering the Lorentz magnetic force obtained from Maxwell's relation. Numerical results from the model show that the longitudinal magnetic field increases the natural frequencies of the DWCNT. Both synchronous and asynchronous vibration phases of the tubes are studied in detail. Synchronous vibration phases of DWCNT are more affected by nonlocal effects than asynchronous vibration phases. The effects of a longitudinal magnetic field on higher natural frequencies are also presented. Vibration response of DWCNT with outer-wall stationary and single-walled carbon nanotube under the effect of longitudinal magnetic field are also discussed in the paper.  相似文献   

14.
王磊  张洪武  王晋宝 《物理学报》2007,56(3):1506-1513
使用分子动力学方法研究几种不同半径尺寸的单壁碳纳米管组成的双壁碳管,预测了其初始稳定构型;分析了其自由弛豫阶段的特征;并模拟了它们在轴向压缩载荷作用下的屈曲行为;研究了不同层间距导致的范德华力变化对屈曲行为的影响.采用Tersoff-Brenner势描述单壁碳纳米管内原子间作用,Lennard-Jones势描述内外层间的范德华相互作用.计算结果表明:在通常意义下的双壁管间距(约0.34 nm)外还可以存在稳定的双壁碳管构型,并且这些新的稳定构型表现出了不同的力学性质. 关键词: 双壁碳纳米管 分子动力学 屈曲  相似文献   

15.
This article studies the nonlinear vibration of viscoelastic embedded nano-sandwich structures containing of a double walled carbon nanotube (DWCNT) integrated with two piezoelectric Zinc oxide (ZnO) layers. DWCNT and ZnO layers are subjected to magnetic and electric fields, respectively. This system is conveying viscous fluid and the related force is calculated by modified Navier–Stokes relation considering slip boundary condition and Knudsen number. Visco–Pasternak model with three parameters of the Winkler modulus, shear modulus, and damp coefficient is used for simulation of viscoelastic medium. The nano-structure is simulated as an orthotropic Timoshenko beam (TB) and the effects of small scale, structural damping and surface stress are considered based on Eringen's, Kelvin-voigt and Gurtin–Murdoch theories. Energy method and Hamilton's principle are employed to derive motion equations which are then solved using differential quadrature method (DQM). The detailed parametric study is conducted, focusing on the combined effects of small scale effect, fluid velocity, thickness of piezoelectric layer, boundary condition, surface effects, van der Waals (vdW) force on the frequency and critical velocity of nano-structure. Results indicate that the frequency and critical velocity increases with assume of surface effects.  相似文献   

16.
We investigate the co-doping of potassium and bromine in single-walled carbon nanotubes (SWCNTs) and doublewalled carbon nanotubes (DWCNTs) based on density functional theory. In the co-doped (6,0) SWCNTs, the 4s electron of potassium is transferred to nanotube and Br, leading to the n-type feature of SWCNTs. When potassium is intercalated into inner tube and bromine is put on outer tube, the positive and negative charges reside on the outer and inner tubes of the (7,0)@(16,0) DWCNT, respectively. It is expected that DWCNTs would be an ideal candidate for p-n junction and diode applications.  相似文献   

17.
In this study, an analytical method of the small scale parameter on the vibration of single-walled Boron Nitride nanotube (SWBNNT) under a moving nanoparticle is presented. SWBNNT is embedded in bundle of carbon nanotubes (CNTs) which is simulated as Pasternak foundation. Using Euler–Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. The effects of electric field, elastic medium, slenderness ratio and small scale parameter are investigated on the vibration behavior of SWBNNT under a moving nanoparticle. Results indicate the importance of using surrounding elastic medium in decrease of normalized dynamic deflection. Indeed, the normalized dynamic deflection decreases with the increase of the elastic medium stiffness values. The electric field has significant role on the nondimensional fundamental frequencies, as a smart controller. The results of this work is hoped to be of use in design and manufacturing of smart nano-electro-mechanical devices in advanced medical applications such as drug delivery systems with great applications in biomechanics.  相似文献   

18.
Due to strong van der Waals (vdW) interactions, the graphene sheets and nanotubes stick to each other and form clusters of these corresponding nanostructures, viz. bi-layered graphene sheet (BLGS), double-walled carbon nanotube (DWCNT) and nanotube bundle (NB) or ropes. This research work is concerned with the study of nonlinear dynamics of BLGS, DWCNT and NB due to nonlinear interlayer vdW forces using multiscale atomistic finite element method. The energy between two adjacent carbon atoms is represented by the multibody interatomic Tersoff–Brenner potential, whereas the nonlinear interlayer vdW forces are represented by Lennard-Jones 6–12 potential function. The equivalent nonlinear material model of carbon–carbon bond is used to model it based on its force–deflection relation. Newmark’s algorithm is used to solve the nonlinear matrix equation governing the motion of the BLGS, DWCNT and NB. An impulse and harmonic excitations are used to excite these nanostructures under cantilevered, bridged and clamped boundary conditions. The frequency responses of these nanostructures are computed, and the dominant resonant frequencies are identified. Along with the forced vibration of these structures, the eigenvalue extraction problem of armchair and zigzag NB is also considered. The natural frequencies and corresponding mode shapes are extracted for the different length and boundary conditions of the nanotube bundle.  相似文献   

19.
朱亚波  鲍振  蔡存金  杨玉杰 《物理学报》2009,58(11):7833-7837
运用分子动力学方法具体模拟研究单个碳纳米管(CNTs)在加热过程中的结构变化.选择多组不同结构的单壁碳纳米管(SWCNTs)和双壁碳纳米管(DWCNTs)作为研究对象,加热温度从室温开始到4000 K,压强保持为1 atm.结果表明单壁碳管中手性型结构热稳定性最好,其次是扶手椅型和锯齿型,当手性角相同时,直径大的热稳定性更高;对于双壁碳管,研究表明当双壁中至少之一为手性结构时其热稳定好,而内外壁均为锯齿结构的稳定性最差,该结果进一步支持了有关单壁碳管的结论;还从理论上探索了描述结构热稳定性的方式,并在键层 关键词: 单壁碳纳米管 双壁碳纳米管 分子动力学方法 热稳定性能  相似文献   

20.
This article studies transverse waves propagating in carbon nanotubes (CNTs) embedded in a surrounding medium. The CNTs are modeled as a nonlocal elastic beam, whereas the surrounding medium is modeled as a bi-parameter elastic medium. When taking into account the effect of rotary inertia of cross-section, a governing equation is acquired. A comparison of wave speeds using the Rayleigh and Euler-Bernoulli theories of beams with the results of molecular dynamics simulation indicates that the nonlocal Rayleigh beam model is more adequate to describe flexural waves in CNTs than the nonlocal Euler-Bernoulli model. The influences of the surrounding medium and rotary inertia on the phase speed for single-walled and double-walled CNTs are analyzed. Obtained results turn out that the surrounding medium plays a dominant role for lower wave numbers, while rotary inertia strongly affects the phase speed for higher wave numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号