首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetically aligned bicelles are becoming attractive model membranes to investigate the structure, dynamics, geometry, and interaction of membrane-associated peptides and proteins using solution- and solid-state NMR experiments. Recent studies have shown that bicelles are more suitable than mechanically aligned bilayers for multidimensional solid-state NMR experiments. In this work, we describe experimental aspects of the natural abundance (13)C and (14)N NMR spectroscopy of DMPC/DHPC bicelles. In particular, approaches to enhance the sensitivity and resolution and to quantify radio-frequency heating effects are presented. Sensitivity of (13)C detection using single pulse excitation, conventional cross-polarization (CP), ramp-CP, and NOE techniques are compared. Our results suggest that the proton decoupling efficiency of the FLOPSY pulse sequence is better than that of continuous wave decoupling, TPPM, SPINAL, and WALTZ sequences. A simple method of monitoring the water proton chemical shift is demonstrated for the measurement of sample temperature and calibration of the radio-frequency-induced heating in the sample. The possibility of using (14)N experiments on bicelles is also discussed.  相似文献   

2.
Several representative examples are given of the successful application of negative staining across the holes of holey carbon support films using 5% (w/v) ammonium molybdate solution containing trehalose. The inclusion of 0.1% (w/v) trehalose is considered to be most satisfactory, although good data have also been obtained in the presence of 0.01 and 1.0% (w/v) trehalose. The examples given fall into the following groups: protein molecules in the absence of polyethylene glycol (PEG), protein molecules in the presence of PEG (Mr 1000), lipoproteins, lipids and membranes, filaments and tubules, viruses in the absence of PEG, viruses in the presence of PEG, aqueous polymer solutions, and finally for comparison purposes, four unstained samples studied in the presence of trehalose alone. In all these cases, and many others not documented here, successful spreading of the sample across holes has been achieved, with the sample embedded within a thin film of air-dried ammonium molybdate+trehalose. These specimens can be rapidly produced and provide an alternative to negatively stained specimens on carbon support films. Specimen stability in the electron bean is good and such specimens can usually generate superior negatively stained TEM images without flattening and adsorption artefacts. The formation of 2-D arrays/crystals of protein molecules and viruses, suspended across holes in the presence of ammonium molbybdate+trehalose, and trehalose alone, is also demonstrated.  相似文献   

3.
The chemical shifts of nuclei that have chemical shielding anisotropy, such as the 15N amide in a protein, show significant changes in their chemical shifts when the sample is altered from an isotropic state to an aligned state. Such orientation-dependent chemical shift changes provide information on the magnitudes and orientation of the chemical shielding tensors relative to the molecule's alignment frame. Because of the extremely high sensitivity of the chemical shifts to the sample conditions, the changes in chemical shifts induced by adding aligned bicelles do not arise only from the protein alignment but should also include the accumulated effects of environmental changes including protein-bicelle interactions. With the aim of determining accurate 15N chemical shielding tensor values for solution proteins, here we have used magic angle sample spinning (MAS) to observe discriminately the orientation-dependent changes in the 15N chemical shift. The application of MAS to an aligned bicelle solution removes the torque that aligns the bicelles against the magnetic field. Thus, the application of MAS to a protein in a bicelle solution eliminates only the molecular alignment effect, while keeping all other sample conditions the same. The observed chemical shift differences between experiments with and without MAS therefore provide accurate values of the orientation-dependent 15N chemical shifts. From the values for ubiquitin in a 7.5% (w/v) bicelle medium, we determined the 15N chemical shielding anisotropy (CSA) tensor. For this evaluation, we considered uncertainties in measuring the 1H-15N dipolar couplings and the 15N chemical shifts and also structural noise present in the reference X-ray structure, assuming a random distribution of each NH bond vector in a cone with 5 degrees deviation from the original orientation. Taking into account these types of noise, we determined the average 15N CSA tensor for the residues in ubiquitin as Delta sigma=-162.0+/-4.3 ppm, eta=0.18+/-0.02, and beta=18.6+/-0.5 degrees, assuming a 1H-15N bond length of 1.02 A. These tensor values are consistent with those obtained from solid-state NMR experiments.  相似文献   

4.
Liu Y  Xu X  Ma XH  Liu J  Cui ZF 《Cryo letters》2011,32(5):425-435
The objective of this study is to compare the effects of different well defined freezing solutions with a reduced concentration of dimethylsulfoxide (DMSO) combined with polyethylene glycol (PEG) and/or trehalose on cryopreservation of mesenchymal stem cells (MSCs) from mice, rats and calves. Post-thaw cell viability, proliferation capacity and differentiation potential of MSCs from different species were assessed after cryopreservation with the conventional slow freezing method. Although the post-thaw viabilities and metabolic activities varied among the different species, satisfactory results were obtained with 5 percent (v/v) DMSO, 2 percent (w/v) PEG, 3 percent (w/v) trehalose and 2 percent (w/v) bovine serum albumin (BSA) as the freezing solution. Our results showed that mouse MSCs were more robust to cryopreservation compared with rat and bovine MSCs.  相似文献   

5.
傅日强 《波谱学杂志》2009,26(4):437-456
有序样品的固体核磁共振(NMR)已快速发展成测定蛋白质和多肽在“仿真”水化磷脂层中高分辨结构的重要谱学方法. 由于与膜相连的蛋白质和多肽的结构、动力学和功能往往都和其周边自然环境密切相关,因此人们把蛋白质和多肽有序排列于水化磷脂层中进行固体NMR测量, 从而获得与取向相关的各向异性自旋相互作用. 这些取向约束可作为结构参数重构蛋白质在水化磷脂层中的高分辨三维结构. 近十年来在样品制备,NMR探头和实验方法方面的显著发展,极大地促进了有序样品的固体NMR的发展,并使之成为测定与膜相连的蛋白质和多肽结构的有效方法. 该综述介绍有序样品的固体NMR谱学方法,并总结此领域里的最新研究进展.  相似文献   

6.
The design, construction, and performance of a cross-coil double-resonance probe for solid-state NMR experiments on lossy biological samples at high magnetic fields are described. The outer coil is a Modified Alderman–Grant Coil (MAGC) tuned to the 1H frequency. The inner coil consists of a multi-turn solenoid coil that produces a B1 field orthogonal to that of the outer coil. This results in a compact nested cross-coil pair with the inner solenoid coil tuned to the low frequency detection channel. This design has several advantages over multiple-tuned solenoid coil probes, since RF heating from the 1H channel is substantially reduced, it can be tuned for samples with a wide range of dielectric constants, and the simplified circuit design and high inductance inner coil provides excellent sensitivity. The utility of this probe is demonstrated on two electrically lossy samples of membrane proteins in phospholipid bilayers (bicelles) that are particularly difficult for conventional NMR probes. The 72-residue polypeptide embedding the transmembrane helices 3 and 4 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (residues 194–241) requires a high salt concentration in order to be successfully reconstituted in phospholipid bicelles. A second application is to paramagnetic relaxation enhancement applied to the membrane-bound form of Pf1 coat protein in phospholipid bicelles where the resistance to sample heating enables high duty cycle solid-state NMR experiments to be performed.  相似文献   

7.
该工作探讨利用TEOS前驱液及不同含量、不同分子量PEG制备出SiO2粉末的性质.SiO2粉末由溶胶-凝胶法制备,并结合退火前后烘干.TEOS前驱溶液的水解及缩合反应速率在pH=3时比在pH=5,7,9时进行得更彻底,且随温度及PEG分子量的升高而升高;粉末产率在TEOS前驱液pH=3时达到最大.与不加PEG的溶胶-凝胶法制备出的样品相比,加入PEG制备的粉末有更高的吸水能力.若粉末从高至500℃退火,则可发现乙醇浓度增加.依据液体和固体NMR、电子显微镜以及BET结果,对吸水及粉末表面积之间的关系进行了讨论.  相似文献   

8.
Polymeric micelles are attractive nanocarriers for hydrophobic drug molecules such as the kinase inhibitor dactolisib. Two different poly(ethylene glycol)–poly(acrylic acid) (PEG‐b‐PAA) block‐copolymers are synthesized, PEG(5400)‐b‐PAA(2000) and PEG(10000)‐b‐PAA(3700), respectively. Polymeric micelles are formed by self‐assembly once dactolisib is conjugated via the ethylenediamine platinum(II) linker (Lx) to the PAA block of the block copolymers. Dactolisib micelles with dactolisib loading content of 17% w/w show good colloidal stability and display sustained release of Lx‐dactolisib over 96 h in PBS at 37 °C, while media containing reagents that compete for platinum coordination (e.g., glutathione (GSH) or dithiothreitol (DTT)) effectuate release of the parent inhibitor dactolisib at similar release rates. Dactolisib/lissamine‐loaded micelles are internalized by human breast adenocarcinoma cells (MCF‐7) in a dose and time‐dependent manner as demonstrated by confocal microscopy. Dactolisib‐loaded micelles inhibit the PI3K/mTOR signaling pathway at low concentrations (400 × 10?9 m ) and exhibit potent cytotoxicity against MCF‐7 cells with IC50 values of 462 ± 46 and 755 ± 75 × 10?9 m for micelles with either short or longer PEG‐b‐PAA block lengths. In conclusion, dactolisib loaded PEG‐b‐PAA micelles are successfully prepared and hold potential for nanomedicine‐based tumor delivery of dactolisib.  相似文献   

9.
Bicelles composed of the long-chain biphenyl phospholipid TBBPC (1-tetradecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-PC) and the short-chain phospholipid DHPC align with their bilayer normals parallel to the direction of the magnetic field. In contrast, in typical bicelles the long-chain phospholipid is DMPC or DPPC, and the bilayers align with their normals perpendicular to the field. Samples of the membrane-bound form of the major coat protein of Pf1 bacteriophage in TBBPC bicelles are stable for several months, align magnetically over a wide range of temperatures, and yield well-resolved solid-state NMR spectra similar to those obtained from samples aligned mechanically on glass plates or in DMPC bicelle samples "flipped" with lanthanide ions so that their bilayer normals are parallel to the field. The order parameter of the TBBPC bicelle sample decreases from approximately 0.9 to 0.8 upon increasing the temperature from 20 degrees C to 60 degrees C. Since the frequency spans of the chemical shift and dipolar coupling interactions are twice as large as those obtained from proteins in DMPC bicelles without lanthanide ions, TBBPC bicelles provide an opportunity for structural studies with higher spectral resolution of the metal-binding membrane proteins without the risk of chemical or spectroscopic interference from the added lanthanide ions. In addition, the large temperature range of these samples is advantageous for the studies of membrane proteins that are unstable at elevated temperatures and for experiments requiring measurements as a function of temperature.  相似文献   

10.
研究了He-Ne激光对红霉素链霉菌(streptomyc eserythreus简称SE)和龟裂链霉菌(Streptomyces rimosus简称SR)灭活原生质体和种间融合频率的影响.正交实验结果表明:在温度40℃,融合时间5min,聚乙二醇(PEG)浓度为40%的条件下,灭活原生质体融合频率为1.03×10-5,在He-Ne激光与PEG双重促融作用下,双亲灭活原生质体的种间融合频率可达7.86×10-5.证实了He-Ne激光对原生质体融合有明显的促进作用.  相似文献   

11.
用Cooγ-射线辐照聚合方法,在20%(V/V)的乙醇溶液中成功地制备出了线性聚甲基丙烯酸羟乙酯。从在20MHz和35℃条件下获得的13CNMR光谱中,观察到该聚合物的二单元组、三单元组和五单元组单体序列分布。将所观察到的各类型碳的强度分布与通过柏努利统计模型所计算出的值进行比较,对各峰进行归了属。其结果表明,该聚合过程符合柏努利过程。用这种方法制备的聚甲基丙烯酸羟乙酯的三单元组规整度分别为:间规立构70.2%;杂规立构27.2%等规立构2.6%。  相似文献   

12.
Poly(ethylene glycol) (PEG) was added as a plasticizer to the composite of poly(lactic acid) (PLA) and a modified carbon black (MCB). Among the three different molecular weight (Mn = 1000, 2000, 6000) PEGs used, PEG2000 promoted crystallization of PLA and enhanced the nucleation activity of MCB more efficiently than the other two. The crystallization rate of PLA/PEG2000/3 wt% MCB composite was three times that of PLA. Although a small decrease in tensile strength and modulus of elasticity of the composite was found as the PEG content increased, the elongation at break of the PLA/PEG/MCB composites significantly improved. When the PEG2000 content was 15 wt%, the elongation at break of the blend was 90%, 4.5 times that of the neat PLA.  相似文献   

13.
Polyelectrolyte biopolymers such as calcium alginate are becoming increasingly important for the recovery of heavy metals from aqueous solutions. To understand the mechanism of ion transport in these biopolymer systems, the transport of copper ions into calcium alginate gels was investigated using proton nuclear magnetic resonance (NMR) microscopy. Copper ion transport was imaged using an inversion recovery technique which utilizes the paramagnetic effect of copper on water proton relaxation times. Diffusion experiments were performed in a diffusion cell designed to approximate a semi-infinite slab geometry at temperatures between 278 and 313 K using copper reservoir concentrations between 10 and 60 mM. The diffusion coefficient of copper in these gels was calculated from the NMR data to fit a combined diffusion-reaction model involving a diffusion term (D) and a kinetic binding term (k). At 23 °C, the diffusion coefficients in 1, 2, and 3% (w/v) gels were 3.1 · 10−10, 2.0 · 10−10, and 1.4 · 10−10 m2/s, respectively. The activation energy for diffusion in the 2% (w/v) gel was 28 kJ/mol.  相似文献   

14.
2-Phenylethanol (2-PE) is an aromatic alcohol with high research octane number, high octane sensitivity, and a potential to be produced using biomass. Considering that 2-PE can be used as a fuel additive for boosting the anti-knocking quality of gasoline in spark-ignition engines and as the low reactivity fuel or fuel component in dual-fuel reactivity controlled compression ignition (RCCI) engines, it is of fundamental and practical interest to understand the autoignition chemistry of 2-PE, especially at low-to-intermediate temperatures (<1000 K). Based upon the experimental ignition delay time (IDT) results of neat 2-PE obtained from our previous rapid compression machine (RCM) investigation and the literature shock tube study, a detailed chemical kinetic model of 2-PE is developed herein, covering low-to-high temperature regimes. Besides, RCM experiments using binary fuel blends of 2-PE and n-heptane (nC7) are conducted in this work to investigate the nC7/2-PE blending effects, as they represent a dual-fuel system for RCCI operations. Furthermore, the newly developed 2-PE model is merged with a well-validated nC7 kinetic model to generate the current nC7/2-PE binary blend model. Overall, the consolidated model reasonably predicts the experimental IDT data of neat 2-PE and nC7/2-PE blends, as well as captures the experimental effects of pressure, equivalence ratio, and blending ratio on autoignition. Finally, model-based chemical kinetic analyses are carried out to understand and identify the controlling chemistry accounting for the observed blending effects in RCM experiments. The analyses reveal that nC7 enhances 2-PE autoignition via providing extra ȮH radicals to the shared radical pool, while the diminished nC7 promoting effect on 2-PE autoignition with increasing temperature is due to the negative temperature coefficient characteristics of nC7.  相似文献   

15.
Our lab is developing a spin-labeled EPR spectroscopic technique complementary to solid-state NMR studies to study the structure, orientation, and dynamics of uniaxially aligned integral membrane proteins inserted into magnetically aligned discotic phospholipid bilayers, or bicelles. The focus of this study is to optimize and understand the mechanisms involved in the magnetic alignment process of bicelle disks in weak magnetic fields. Developing experimental conditions for optimized magnetic alignment of bicelles in low magnetic fields may prove useful to study the dynamics of membrane proteins and its interactions with lipids, drugs, steroids, signaling events, other proteins, etc. In weak magnetic fields, the magnetic alignment of Tm(3+)-doped bicelle disks was thermodynamically and kinetically very sensitive to experimental conditions. Tm(3+)-doped bicelles were magnetically aligned using the following optimized procedure: the temperature was slowly raised at a rate of 1.9K/min from an initial temperature being between 298 and 307K to a final temperature of 318K in the presence of a static magnetic field of 6300G. The spin probe 3beta-doxyl-5alpha-cholestane (cholestane) was inserted into the bicelle disks and utilized to monitor bicelle alignment by analyzing the anisotropic hyperfine splitting for the corresponding EPR spectra. The phases of the bicelles were determined using solid-state 2H NMR spectroscopy and compared with the corresponding EPR spectra. Macroscopic alignment commenced in the liquid crystalline nematic phase (307K), continued to increase upon slowly raising the temperature, and was well-aligned in the liquid crystalline lamellar smectic phase (318K).  相似文献   

16.
Solid-state deuterium NMR spectroscopy was used to study the structural and dynamic properties of stearic acid-d(35) in magnetically aligned phospholipid bilayers as a function of temperature. Magnetically aligned phospholipid bilayers or bicelles are model systems, which mimic biological membranes for magnetic resonance studies. Paramagnetic lanthanide ions (Yb(3+)) were added to align the bicelles such that the bilayer normal is colinear with the direction of the static magnetic field. The corresponding order parameters of the stearic acid-d(35) probe were calculated and compared with values obtained from unoriented samples in the literature. The addition of cholesterol to the bicelle system decreases the fluidity of the phospholipid bilayers and increases the ordering of the acyl chains of stearic acid-d(35). This study demonstrates the feasibility of utilizing magnetically aligned bicelles for calculating 2H order parameter profiles for non-biological systems such as polymer-grafted membranes and Schiff's base complexes.  相似文献   

17.
将二氧化硅颗粒和不同分子链长添加剂颗粒分散到聚乙二醇分散介质中制得剪切增稠液样品,研究了添加剂的不同含量和不同分子链长对剪切增稠液流变性能的影响. 对其流变特性的研究表明,随着添加剂含量的增加和分子链长的增长,样品的剪切增稠效应增强明显,并用大粒子簇的形成对增强机理给出了合理的解释.  相似文献   

18.
We have shown that bicelles prepared from dilauryl phosphatidylcholine (DLPC) and dipalmitoyl phosphatidylcholine (DPPC) align in a magnetic field under conditions similar to the more common dimyristoyl phosphatidylcholine (DMPC) bicelles. In addition, a model transmembrane peptide, P16, with a hydrophobic stretch of 24 A, and specific alanine-d(3) labels, was incorporated into all of the different bicelles. The long-chain phospholipid (DLPC, DMPC, or DPPC) remained unperturbed upon incorporation of the peptide while the quadrupolar splitting of the short-chain phospholipid along the bicelle rim increased by varying degrees in the different bicelle systems. The change in quadrupolar splitting of the short-chain phospholipids was attributed to changes in either fluidity of the planar region of the bicelle or differences in overall lipid packing. When the hydrophobic stretch of the bilayer was 22.8 (DMPC) or 26.3 A (DPPC), the peptide tilt was found to be transmembrane (33-35 degrees with respect to the bicelle normal). When the hydrophobic stretch of the bilayer was 19.5 A (DLPC), the peptide quadrupolar splittings suggested a loss of transmembrane orientation. When tryptophan was incorporated in the middle of the transmembrane region, the transmembrane orientation was also lost.  相似文献   

19.
Polyacrylamide (PAAm)–sodium alginate (SA) composite was prepared with different amounts of SA varying in the range between 0.06% and 2% (w/v). The PAAm–SA composite was characterized by the steady-state fluorescence technique. Pyranine was added as a fluoroprobe for monitoring the polymerization. It was observed that pyranine molecules bind to AAm and SA chains upon the initiation of the polymerization. Thus, the fluorescence spectra of the bonded pyranines shift to the shorter wavelengths. Fluorescence spectra from the bonded pyranines allowed us to monitor the sol–gel phase transition, and to test the universality of the sol–gel transition as a function of SA contents. Observations around the critical point show that the gel fraction exponent, β, and the weight average degree of polymerization exponent, γ, agreed with the percolation result for (<0.25% (w/v)) SA contents. However, classical results were produced at (<2% (w/v)) SA contents.  相似文献   

20.
癌变与正常直肠组织的核磁共振氢谱差异的研究   总被引:3,自引:3,他引:0  
核磁共振(NMR)波谱法是一种表征分子结构、组成变化的有效手段,能够得到生物组织中的核酸、蛋白质、脂类和糖类等生物大分子的含量、分子的空间排列和结构特征等信息,可以从分子水平上研究肿瘤与对照组织之间的差别,更深入地揭示肿瘤的发生、发展中产生的各种分子水平变化。文章对9例直肠癌组织及癌旁正常组织进行了核磁共振氢谱的测定。结果表明,直肠正常和癌变组织的核磁共振氢谱存在显著的差异,这可以通过对谱图特征峰区域积分面积相对比值的差别看出来。直肠正常组织核磁共振氢谱中A0.9/A3.0,A1.3/A3.0,A2.0/A3.0,A1.3/A0.9及A4.1/A3.0值较相应的癌组织偏大,直肠癌组织核磁共振氢谱中A3.2/A3.0值较相应正常直肠组织偏大。通过这些差异核磁共振氢谱技术有可能发展成为早期诊断直肠癌组织的一种方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号