首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The mechanical, thermodynamical and elastic properties of Hg0.91Mn0.09Te compound are calculated by formulating an effective interionic interaction potential. This potential consists of the long-range Coulomb, three body force parameter, the Hafemeister and Flygare type short-range overlap repulsion extended upto the second neighbor ions and the van der Waals (vdW) interaction. The estimated values of phase transition pressure have revealed reasonably good agreement with the available experimental data on the phase transition pressure P t = 11.5 GPa and the vast volume discontinuity in pressure-volume (PV) phase diagram indicate the structural phase transition from zincblende (B3) to rock salt (B1) structure. Later on, the Poisson’s ratio ν, the ratio R S/B of S (Voigt averaged shear modulus) over B (bulk modulus), elastic anisotropy parameter, elastic wave velocity, average wave velocity and Debye temperature as functions of pressure is calculated. From Poisson’s ratio and the ratio R S/B it is inferred that Hg0.91Mn0.09Te is brittle in nature in both B3 phase and B1 phase. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of ductile (brittle) nature of Hg0.91Mn0.09Te compounds and still awaits experimental confirmations.  相似文献   

2.
The crystal structure and the magnetic ordering pattern of the electrically insulating perovskite CeVO3 was investigated by high-resolution powder X-ray diffraction and single-crystal neutron diffraction. A structural phase transition from an orthorhombic to a monoclinic structure (with space groups Pbnm and P21/b, respectively) was observed upon cooling below T s = 136 K. This transition is associated with a strong distortion of the VO6-octahedra and can be attributed to orbital ordering. A magnetic ordering transition driven by exchange interactions between vanadium moments is observed at T N = 124 K, and antiferromagnetic interactions between magnetic moments on vanadium and cerium ions induce a progressive magnetic polarization of the cerium sublattice at lower temperatures. The full magnetic structure is described by a superposition of the modes (C x , F y , −) and (F x , C y , −). The unit cell volume and the tilt angles of the VO6-octahedra in the CeVO3-crystal structure are anomalous compared to those of other members of the series RVO3 (R = lanthanide atom), and the ordered magnetic moments on both vanadium and cerium sublattices at low temperatures are considerably smaller than the free-ion values of V3+ and Ce3+. Possible origins of this behavior are discussed.  相似文献   

3.
3d transition metal (V, Cr and Fe) ions are implanted into TiO2 by the method of metal ion implantation. The electronic band structures of TiO2 films doped 3d transition metal ions have been analyzed by ab initio band calculations based on a self-consistent full-potential linearized augmented plane-wave method within the first-principle formalism. Influence of implantation on TiO2 films is examined by the method of UV-visible spectrometry. The results of experiment and calculation show that the optical band gap of TiO2 films is narrowed by ion implantation. The calculation shows that the 3d state of V, Cr and Fe ions plays a significant role in red shift of UV-Vis absorbance spectrum.  相似文献   

4.
The lattice dynamics of lithium nitride (Li3N) under high pressure are extensively investigated to probe its phase transformations by using the pseudopotential plane-wave method within the density functional theory. A new second order α↦α-Li3N phase transition is identified for the first time. The newly proposed α-phase possesses a hexagonal symmetry with four ions in the unit cell having a space group of P-3m1. Further enthalpy and phonon calculations support the existence of this phase, which stabilizes in a narrow pressure range of 2.8 – 3.6 GPa at zero temperature. Upon further compression, transitions to denser packed phases of β-and γ-Li3N are typical first order. The analysis of the electronic densities of states suggests that all the high pressure modifications of Li3N are insulators and, interestingly, the typical behavior of compression is to broaden the band gap.  相似文献   

5.
We studied the optical properties of antiferromagnetic ZnCr2Se4 by infrared spectroscopy up to 28,000 cm-1 and for temperatures from 5 to 295 K. At the magnetic phase transition at 21 K, one of the four phonon modes reveals a clear splitting of 3 cm-1 as a result of spin-phonon coupling, the other three optical eigenmodes only show shifts of the eigenfrequencies. The antiferromagnetic ordering and the concomitant splitting of the phonon mode can be suppressed in a magnetic field of 7 T. At higher energies we observed a broad excitation band which is dominated by a two-peak-structure at about 18,000 cm-1 and 22,000 cm-1, respectively. These energies are in good agreement with the expected spin-allowed crystal-field transitions of the Cr3+ ions. The unexpected strength of these transitions with d-d character is attributed to a considerable hybridization of the selenium p with the chromium d orbitals.  相似文献   

6.
The high pressure phase transition of lanthanum monotellurides having NaCl-type (B1) structure have been studied using three-body interaction potential (TBIP) approach. The potential model consists of long-range Coulombic, three-body interaction forces, short-range overlap repulsive forces operative up to next nearest neighbor ions, van der Walls interactions and zero point energy effects. To understand the effect of pressure on elastic constant and their combinations, they have also been studied. The Born stability criterion was also found to be fulfiled in the present study. Our calculated results of phase transitions, volume collapses and elastic behavior of these monotellurides are found to be close to the experimental results. This shows that the inclusion of three-body interaction effects makes the present model suitable for high-pressure studies.  相似文献   

7.
Guoqiang Liu  Lei Wen  Yue Li  Yulong Kou 《Ionics》2015,21(4):1011-1016
The pure phase P2-Na2/3Ni1/3Mn2/3O2 was synthesized by a solid reaction process. The optimum calcination temperature was 850 °C. The as-prepared product delivered a capacity of 158 mAh g?1 in the voltage range of 2–4.5 V, and there was a phase transition from P2 to O2 at about 4.2 V in the charge process. The P2 phase exhibited excellent intercalation behavior of Na ions. The reversible capacity is about 88.5 mAh g?1 at 0.1 C in the voltage range of 2–4 V at room temperature. At an elevated temperature of 55 °C, it could remain as an excellent capacity retention at low current rates. The P2-Na2/3Ni1/3Mn2/3O2 is a potential cathode material for sodium-ion batteries.  相似文献   

8.
The present paper addresses the pressure-induced structural aspects of ZnS-type (B3) to NaCl-type (B1) structure in AlY (Y=N, P, As). An effective-interionic interaction potential (EIoIP) with long-range Coulomb and three-body interactions and the Hafemeister-and-Flygare-type short-range overlap repulsion extended up to the second-neighbour ions and the van der Waals (vdW) interaction is developed. Emphasis has been given on evaluating the vdW coefficients by the Slater-Kirkwood variational method, as both the ions are polarizable. The lattice model calculations have revealed reasonably good agreement with the available experimental data on the phase-transition pressures (Pt=16, 14, 7.5 GPa) and the elastic properties of AlY (Y=N, P, As). The equation of state curves (plotted between V(P)/V(0) and pressure) for both the B3 and B1 structures obtained are in fairly good agreement with the experimental results. The calculated values of the volume collapses [ΔV(P)/V(0)] are also close to their observed data. Further, the variations of the second-order elastic constants with pressure follow a systematic trend that is almost identical to that exhibited by the observed data measured for other semiconducting compounds with B3→B1 structural phase transitions.  相似文献   

9.
The crystal structure and Raman spectra of Pr0.7Ca0.3MnO3 manganite at high pressures of up to 30 GPa and the magnetic structure at pressures of up to 1 GPa have been studied. A structural phase transition from the orthorhombic phase of the Pnma symmetry to the high-pressure orthorhombic phase of the Imma symmetry has been observed at P ∼ 15 GPa and room temperature. Anomalies of the pressure dependences of the bending and stretching vibrational modes have been observed in the region of the phase transition. A magnetic phase transition from the initial ferromagnetic ground state (T C = 120 K) to the A-type antiferromagnetic state (T N = 140 K) takes place at a relatively low pressure of P = 1 GPa in the low-temperature region. The structural mechanisms of the change of the character of the magnetic ordering have been discussed.  相似文献   

10.
The crystal and magnetic structure of the perovskite-like, oxygen deficient cobalt oxide YBaCo2O5.5 has been studied by means of neutron and X-ray diffraction in the 10–300 K temperature range. The magnetic ground state is characterized by a coexistence of two distinct antiferromagnetic phases. In the first one, the ionic moments of high-spin Co3+ ions in the pyramidal sites are ordered in a spiral arrangement, while octahedral sites are non-magnetic due to presence of low-spin Co3+ ions. The arrangement in the second phase is collinear of the G-type, with non-zero moments both in pyramidal (high-spin Co3+ ions) and octahedral sites (presumably a mixture of the low- and high-spin states). With increasing temperature, at 260–300 K, the system develops a gradual structural transformation, which is associated with appearance of spontaneous magnetic moment. This process is related to a thermally induced reversion of low- and high-spin states at the octahedral sites to the intermediate-spin Co3+ states, resulting in an insulator-metal transition at TC ≈ TIM ≈ 295 K.  相似文献   

11.
The structural properties of Na2RuO3 under pressure are studied using density functional theory within the nonmagnetic generalized gradient approximation (GGA). We found that one may expect a structural transition at ~3 GPa. This structure at the high-pressure phase is exactly the same as the low-temperature structure of Li2RuO3 (at ambient pressure) and is characterized by the P21/m space group. Ru ions form dimers in this phase and one may expect strong modification of the electronic and magnetic properties in Na2RuO3 at pressure higher than 3 GPa.  相似文献   

12.
The crystal and magnetic structures of Pr0.15Sr0.85MnO3 manganite have been studied by means of powder X-ray and neutron diffraction in the temperature range 10–400 K at high external pressures up to 55 and 4 GPa, respectively. A structural phase transition from cubic to tetragonal phase upon compression was observed, with large positive pressure coefficient of transition temperature dT ct /dP = 28(2) K/GPa. The C-type antiferromagnetic (AFM) ground state is formed below T N 260 K at ambient pressure. While at ambient pressure the structural and magnetic transition temperatures are close, T ct ~ T N , upon compression they become decoupled with T N T ct due to much weaker T N pressure dependence with coefficient dT N /dP = 3.8(1) K/GPa.  相似文献   

13.
X-ray absorption, resonant X-ray emission, and X-ray photoelectron spectroscopical methods have been applied for the study of the electronic structure of defective lithium cobaltites Li x CoO2 (0.6≤x≤1.0). Resonant O K α X-ray emission spectra of LiCoO2 showed localized excitonic states due to a dd transition between occupied and unoccupied Co 3d states. On the base of measurements of Co 3s X-ray photoelectron, Co 2p, and O 1s X-ray absorption spectra, it was established that in defective cobaltites the electronic holes are localized mainly in O 2p states. An evidence of phase separation in Li x CoO2 has been found. It was shown that the semiconductor-to-metal transition in Li x CoO2 (x<0.76) at about 160 K is not accompanied by changes in the Co 3d electronic configuration which remains 3d 6.  相似文献   

14.
Band structure and Fermi surfaces of the A3B compounds V3Co, V3Rh, V3Ir and V3Os are calculated in FP-LAPW calculations. From V3Co to the V3Os compound one observes a decrease of the overlap for d-states from both V and B atoms; the center of gravity of the d-band for V moves upwards, while for the B-atom it moves toward lower energies. Hence, despite the band widening, a weakening of interactions takes place throughout this series, which leads to a lattice expansion as experimentally observed. The bonding mechanism in these compounds is found to be dominated by the lower energy d-states. Comparatively, the DOS at EF does not change appreciably between these compounds, except for V3Os, where a sharp peak is observed at EF. This feature leads to the highest electronic heat-capacity coefficient γ (2.31 ) in this compound, which otherwise possesses the smallest Bulk modulus (209.05 GPa). In V3Os, for whom no report has been found, a stronger admixture between p-states from both metals near EF is observed, and the Os d-states form a common d-band with the V d-states between 0.4–0.6 Ry. A stronger s–s hybridization is observed for V3Co, which is in the source of the fact that this compound has an anomalously large quadrupole interaction and exhibits a positive Knight shift.  相似文献   

15.
We have demonstrated pulsed laser deposition of Nd-doped gadolinium gallium garnet on Y3Al5O12 by the simultaneous ablation of two separate targets of Nd:Gd3Ga5O12 (GGG) and Ga2O3. Such an approach is of interest as a method of achieving stoichiometry control over films whilst the growth parameters are kept constant and optimal for high quality crystal growth. We show here how the stoichiometry and resultant lattice parameter of a film can be controlled by changing the relative deposition rates from the two targets. Films have been grown with enough extra Ga to compensate for the deficiency that commonly occurs when depositing only from a GGG target. We have also grown crystalline GGG films with an enriched Ga concentration, and this unconventional approach to film stoichiometry control may have potential applications in the fabrication of films with advanced compositionally graded structures.  相似文献   

16.
The acoustical, resistive, and magnetic properties of a La0.75Sr0.25MnO3 lanthanum manganite single crystal are investigated in the temperature range involving the second-order magnetic phase transition. The acoustical measurements are performed by the pulse-echo method in the frequency range 14–90 MHz. It is found that, as the temperature decreases, the velocity of a longitudinal acoustic wave propagating along the [111] axis in the single crystal drastically increases at temperatures below the critical point of the magnetic phase transition. No dispersion of the acoustic velocity is revealed. A sharp increase in the acoustic velocity is accompanied by the appearance of an acoustical absorption peak. The observed effects are discussed with due regard for the interaction of acoustic waves with the magnetic moments of the manganese ions.  相似文献   

17.
A model Hamiltonian for B cation ordering (Sc-Nb(Ta)) in PbSc1/2Nb1/2O3 and PbSc1/2Ta1/2O3 solid solutions is constructed. The parameters of the model Hamiltonian are determined from the ab initio calculation within the ionic crystal model with allowance made for the deformability and the dipole and quadrupole polarizabilities of the ions. The temperatures of the phase transition due to the ordering of the B cations are calculated by the Monte Carlo method in the mean-field and cluster approximations. The phase transition temperatures calculated by the Monte Carlo method (1920 K for PbSc1/2Ta1/2O3 and 1810 K for PbSc1/2Nb1/2O3) are consistent with the experimental data (1770 and 1450 K, respectively). The thermodynamic properties of the cation ordering are investigated using the Monte Carlo method.  相似文献   

18.
This paper reports the first results obtained on monobarium gallate thin films grown on silicon and platinum coated substrates by pulsed laser deposition. The influence of oxygen background pressure and substrate (or post-annealing) temperature on the film properties was studied. The films were characterized by XRD, RHEED, AFM, photoelectron and electrical impedance spectroscopy. The structure analysis showed that the films crystallized into a hexagonal phase, most probably into (metastable) α-BaGa2O4. Depending on deposition conditions, films with different (from nearly epitaxial to polycrystalline) textures were obtained.  相似文献   

19.
Thin solid polymer electrolytes based on polyethylene oxide (PEO) and silver triflate (AgCF3SO3) dispersed with various concentrations of aluminum oxide (Al2O3) nanoparticles have been prepared by solution casting technique. These thin polymer films are found to have thickness of the order of 30 to 100 μm. The X-ray diffraction (XRD) patterns have indicated the amorphous nature of the polymer electrolyte. The differential scanning calorimeter (DSC) traces showed slight change in the glass transition temperature (T g) whereas the degree of crystallization (X c) decreases markedly due to the addition of alumina nanoparticles. Fourier transform infrared (FTIR) spectral analysis of all these samples has revealed the presence of absorption bands around 1,000 cm−1; thus indicating the complexation of silver ions with oxygen in PEO. Employing the Wagner’s polarization technique as the standard method, the total ionic transference number for the complexed polymer electrolyte was found to be approximately unity thereby revealing that the significant contribution to electrical conduction was due to ions only. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, December 7–9, 2006  相似文献   

20.
A first-principles tight-binding linear muffin tin orbital (TB-LMTO) method within the local-density approximation is used to calculate the total energy, lattice parameter, bulk modulus, magnetic moment, density of states and energy band structures of half-metallic CrO2 at ambient as well as at high pressure. The magnetic and structural stabilities are determined from the total energy calculations. From the present study we predict a magnetic transition from ferromagnetic (FM) state to a non-magnetic (NM) state at 65 GPa, which is of second order in nature. We also observe from our calculations that CrO2 is more stable in tetragonal phase (rutile-type) at ambient conditions and undergoes a transition to an orthorhombic structure (CaCl2-type) at 9.6 GPa, which is in good agreement with the experimental results. We predict a second structural phase transition from CaCl2- to fluorite-type structure at 89.6 GPa with a volume collapse of 7.3%, which is yet to be confirmed experimentally. Interestingly, CrO2 shows half metallicity under ambient conditions. After the first structural phase transition from tetragonal to orthorhombic, half metallicity has been retained in CrO2 and it vanishes at a pressure of 41.6 GPa. Ferromagnetism is quenched at a pressure of 65 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号