首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
By Karamata regular variation theory and constructing comparison functions, we derive that the boundary behaviour of the unique solution to a singular Dirichlet problem −Δu=b(x)g(u)+λq|∇u|, u>0, xΩ, u|Ω=0, which is independent of λq|∇uλ|, where Ω is a bounded domain with smooth boundary in RN, λR, q∈(0,2], lims0+g(s)=+∞, and b is non-negative on Ω, which may be vanishing on the boundary.  相似文献   

2.
By Karamata regular variation theory and perturbation method, we show the exact asymptotical behaviour of solutions near the boundary to nonlinear elliptic problems Δu±q|∇u|=b(x)g(u), u>0 in Ω, u|Ω=+∞, where Ω is a bounded domain with smooth boundary in RN, q?0, gC1[0,∞),g(0)=0, g is regularly varying at infinity with index ρ with ρ>0 and b is nonnegative nontrivial in Ω, which may be vanishing on the boundary.  相似文献   

3.
In this paper, we study the existence of multiple positive solutions to some Hamiltonian elliptic systems −Δv=λu+up+εf(x), −Δu=μv+vq+δg(x) in Ω;u,v>0 in Ω; u=v=0 on ∂Ω, where Ω is a bounded domain in RN (N?3); 0?f, g∈L∞(Ω); 1/(p+1)+1/(q+1)=(N−2)/N, p,q>1; λ,μ>0. Using sub- and supersolution method and based on an adaptation of the dual variational approach, we prove the existence of at least two nontrivial positive solutions for all λ,μ∈(0,λ1) and ε,δ∈(0,δ0), where λ1 is the first eigenvalue of the Laplace operator −Δ with zero Dirichlet boundary conditions and δ0 is a positive number.  相似文献   

4.
The existence of a -global attractor is proved for the p-Laplacian equation ut−div(|∇u|p−2u)+f(u)=g on a bounded domain ΩRn(n?3) with Dirichlet boundary condition, where p?2. The nonlinear term f is supposed to satisfy the polynomial growth condition of arbitrary order c1q|u|−k?f(u)u?c2q|u|+k and f(u)?−l, where q?2 is arbitrary. There is no other restriction on p and q. The asymptotic compactness of the corresponding semigroup is proved by using a new a priori estimate method, called asymptotic a priori estimate.  相似文献   

5.
In this paper, we study certain unique continuation properties for solutions of the semilinear heat equation tu−△u=g(u), with the homogeneous Dirichlet boundary condition, over Ω×(0,T). Ω is a bounded, convex open subset of Rd, with a smooth boundary for the subset. The function g:RR satisfies certain conditions. We establish some observation estimates for (uv), where u and v are two solutions to the above-mentioned equation. The observation is made over ω×{T}, where ω is any non-empty open subset of Ω, and T is a positive number such that both u and v exist on the interval [0,T]. At least two results can be derived from these estimates: (i) if ‖(uv)(⋅,T)L2(ω)=δ, then ‖(uv)(⋅,T)L2(Ω)?Cδα where constants C>0 and α∈(0,1) can be independent of u and v in certain cases; (ii) if two solutions of the above equation hold the same value over ω×{T}, then they coincide over Ω×[0,Tm). Tm indicates the maximum number such that these two solutions exist on [0,Tm).  相似文献   

6.
We prove that the semilinear system Δu=a(x)upvq, Δv=b(x)urvs in a smooth bounded domain ΩRN has a unique positive solution with the boundary condition u=v=+∞ on ∂Ω, provided that p,s>1, q,r>0 and (p−1)(s−1)−qr>0. The main novelty is imposing a growth on the possibly singular weights a(x), b(x) near ∂Ω, rather than requiring them to have a precise asymptotic behavior.  相似文献   

7.
We study the degenerate parabolic equation tu=a(δ(x))upΔug(u) in Ω×(0,∞), where ΩRN (N?1) is a smooth bounded domain, p?1, δ(x)=dist(x,∂Ω) and a is a continuous nondecreasing function such that a(0)=0. Under some suitable assumptions on a and g we prove the existence and the uniqueness of a classical solution and we study its asymptotic behavior as t→∞.  相似文献   

8.
The aim of this paper is to investigate the behaviour as t of solutions to the Cauchy problem ut−△utvu−(b,u)=F(u),u(x,0)=u0(x), where v>0 is a fixed constant, t≥0, xΩ, Ω is a bounded domain in Rn. We will first establish an a priori estimate. Then, we establish the global existence, uniqueness and continuous dependence of the weak solution for the Sobolev-Galpern type equation with the Dirichlet boundary.  相似文献   

9.
The existence of local (in time) solutions of the initial-boundary value problem for the following degenerate parabolic equation: ut(x,t)−Δpu(x,t)−|u|q−2u(x,t)=f(x,t), (x,t)∈Ω×(0,T), where 2?p<q<+∞, Ω is a bounded domain in RN, is given and Δp denotes the so-called p-Laplacian defined by Δpu:=∇⋅(|∇u|p−2u), with initial data u0Lr(Ω) is proved under r>N(qp)/p without imposing any smallness on u0 and f. To this end, the above problem is reduced into the Cauchy problem for an evolution equation governed by the difference of two subdifferential operators in a reflexive Banach space, and the theory of subdifferential operators and potential well method are employed to establish energy estimates. Particularly, Lr-estimates of solutions play a crucial role to construct a time-local solution and reveal the dependence of the time interval [0,T0] in which the problem admits a solution. More precisely, T0 depends only on Lr|u0| and f.  相似文献   

10.
We study the boundary value problem −div(log(1+q|∇u|)|∇u|p−2u)=f(u) in Ω, u=0 on ∂Ω, where Ω is a bounded domain in RN with smooth boundary. We distinguish the cases where either f(u)=−λ|u|p−2u+|u|r−2u or f(u)=λ|u|p−2u−|u|r−2u, with p, q>1, p+q<min{N,r}, and r<(NpN+p)/(Np). In the first case we show the existence of infinitely many weak solutions for any λ>0. In the second case we prove the existence of a nontrivial weak solution if λ is sufficiently large. Our approach relies on adequate variational methods in Orlicz-Sobolev spaces.  相似文献   

11.
We prove finite time extinction of the solution of the equation ut−Δu+χ{u>0}(uβλf(u))=0 in Ω×(0,∞) with boundary data u(x,t)=0 on ∂Ω×(0,∞) and initial condition u(x,0)=u0(x) in Ω, where ΩRN is a bounded smooth domain, 0<β<1 and λ>0 is a parameter. For every small enough λ>0 there exists a time t0>0 such that the solution is identically equal to zero.  相似文献   

12.
This paper deals with a class of degenerate quasilinear elliptic equations of the form −div(a(x,u,u)=g−div(f), where a(x,u,u) is allowed to be degenerate with the unknown u. We prove existence of bounded solutions under some hypothesis on f and g. Moreover we prove that there exists a renormalized solution in the case where gL1(Ω) and f∈(Lp(Ω))N.  相似文献   

13.
In this paper we study the large time behavior of non-negative solutions to the Cauchy problem of utumuq in RN×(0,∞), where m>1 and q=qcm+2/N is a critical exponent. For non-negative initial value u(x,0)=u0(x)∈L1(RN), we show that the solution converges, if u0(x)(1+|x|)k is bounded for some k>N, to a unique fundamental solution of utum, independent of the initial value, with additional logarithmic anomalous decay exponent in time as t→∞.  相似文献   

14.
In this paper we analyze the second expansion of the unique solution near the boundary to the singular Dirichlet problem −Δu=b(x)g(u), u>0, xΩ, u|Ω=0, where Ω is a bounded domain with smooth boundary in RN, gC1((0,∞),(0,∞)), g is decreasing on (0,∞) with and g is normalised regularly varying at zero with index −γ (γ>1), , is positive in Ω, may be vanishing on the boundary.  相似文献   

15.
We are concerned with singular elliptic problems of the form −Δu±p(d(x))g(u)=λf(x,u)+μa|∇u| in Ω, where Ω is a smooth bounded domain in RN, d(x)=dist(x,∂Ω), λ>0, μR, 0<a?2, and f is a nondecreasing function. We assume that p(d(x)) is a positive weight with possible singular behavior on the boundary of Ω and that the nonlinearity g is unbounded around the origin. Taking into account the competition between the anisotropic potential p(d(x)), the convection term a|∇u|, and the singular nonlinearity g, we establish various existence and nonexistence results.  相似文献   

16.
We introduce a notion of entropy solution for a scalar conservation law on a bounded domain with nonhomogeneous boundary condition: ut+divΦ(u)=f on Q=(0,TΩ, u(0,⋅)=u0 on Ω and “u=a on some part of the boundary (0,T)×∂Ω.” Existence and uniqueness of the entropy solution is established for any ΦC(R;RN), u0L(Ω), fL(Q), aL((0,T)×∂Ω). In the L1-setting, a corresponding result is proved for the more general notion of renormalised entropy solution.  相似文献   

17.
This article presents a mathematical analysis of input-output mappings in inverse coefficient and source problems for the linear parabolic equation ut=(kx(x)ux)+F(x,t), (x,t)∈ΩT:=(0,1)×(0,T]. The most experimentally feasible boundary measured data, the Neumann output (flux) data f(t):=−k(0)ux(0,t), is used at the boundary x=0. For each inverse problems structure of the input-output mappings is analyzed based on maximum principle and corresponding adjoint problems. Derived integral identities between the solutions of forward problems and corresponding adjoint problems, permit one to prove the monotonicity and invertibility of the input-output mappings. Some numerical applications are presented.  相似文献   

18.
Let ΩRN(N?3) be a bounded domain with smooth boundary. We show the asymptotic behavior of boundary blowup solutions to non-linear elliptic equation Δu±|u|q=b(x)f(u) in Ω, subject to the singular boundary condition u(x)= as dist(x,Ω)→0,f is Γ-varying at . Our analysis is based on the Karamata regular variation theory combined with the method of lower and supper solution.  相似文献   

19.
We consider the equation −ε2Δu+u=up in ΩRN, where Ω is open, smooth and bounded, and we prove concentration of solutions along k-dimensional minimal submanifolds of ∂Ω, for N?3 and for k∈{1,…,N−2}. We impose Neumann boundary conditions, assuming 1<p<(Nk+2)/(Nk−2) and ε0+. This result settles in full generality a phenomenon previously considered only in the particular case N=3 and k=1.  相似文献   

20.
In this paper we consider a semilinear parabolic equation ut=Δuc(x,t)up for (x,t)∈Ω×(0,) with nonlinear and nonlocal boundary condition uΩ×(0,)=∫Ωk(x,y,t)uldy and nonnegative initial data where p>0 and l>0. We prove some global existence results. Criteria on this problem which determine whether the solutions blow up in finite time for large or for all nontrivial initial data are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号