首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A one-dimensional exchange experiment is proposed for magic-angle-spinning samples with several groups of equivalent nuclei undergoing internal exchange, such as pure reorientation, as opposed to mutual exchange. The method, which we term time-reverse ODESSA, is an extension of the recently proposed 1D ODESSA experiment for a single group of exchanging nuclei. When several different groups of spins are present, as is usually the case for carbon-13 in polymers and molecular crystals, the normal ODESSA spectrum yields phase-twisted spectra which are difficult to analyze quantitatively. This problem is solved in the time-reverse ODESSA experiment which yields pure absorption spectra for all families of side bands, as long as only internal exchange need be considered. The experiment consists of the usual three pulse sequence of 2D exchange,P1—t1—P2—τm—P3—t2(acquisition), except that the evolution time is fixed at half a rotation period,t1= TR/2, the mixing time is set to an odd number of half rotation periods, τm= (2G− 1)TR/2, and the acquisition starts att2= TR/2 after the detection pulse,P3. The method is demonstrated using the carbon-13 spectra of dimethyl sulfone and an enriched sample of tropolone, and is applied to the study of the π flip of the inner benzene ring of 1,4-diphenoxybenzene. The scope and limitations of the method are discussed.  相似文献   

2.
It has been shown over the last few years that the dynamics close to the glass transition is strongly heterogeneous, both by measuring the diffusion coefficient of tagged particles or by NMR studies. Recent experiments have also demonstrated that the glass transition temperature of thin polymer films can be shifted as compared to the same polymer in the bulk. We propose here first a thermodynamical model for van der Waals liquids, which accounts for experimental results regarding the bulk modulus of polymer melts and the evolution of the density with temperature. This model allows us to describe the density fluctuations in such van der Waals liquids. Then, by considering the thermally induced density fluctuations in the bulk, we propose that the 3D glass transition is controlled by the percolation of small domains of slow dynamics, which allows to explain the heterogeneous dynamics close to T g. We show then that these domains percolate at a lower temperature in the quasi-2D case of thin suspended polymer films and we calculate the corresponding glass transition temperature reduction, in quantitative agreement with experimental results of Jones and co-workers. In the case of strongly adsorbed films, we show that the strong adsorption amounts to enhance the slow domains percolation. This effect leads to 1) a broadening of the glass transition and 2) an increase of T g in quantitative agreement with experimental results. For both strongly and weakly adsorbed films, the shift in T g is given by a power law, the exponent being the inverse of that of the correlation length of 3D percolation. Received 21 March 2000 and Received in final form 4 December 2000  相似文献   

3.
Abstract

In the enthalpy relaxation of poly(vinyl chloride), a decrease in enthalpy upon the isothermal ageing was measured using the differential scanning calorimetry method as a function of ageing time (tA) and ageing temperature. The range of the ageing temperature was from 56?°C (Tg ? 25?°C) to 72?°C (Tg ? 9?°C) where Tg denotes the glass transition temperature. The limiting value of the decrease in enthalpy was determined by applying a stretched exponential function to the measured enthalpy data. The relaxation function (?) was derived from the measured enthalpy and the construction of a master curve was tried by shifting the ? ? tA curves of the respective ageing temperatures horizontally. Although there was no agreement between the shift factors (aT) and the relaxation times of the ? ? tA curves, the superposition was successfully constructed and the aT values obtained for the poly(vinyl chloride) sample were found to be comparable to those reported for viscoelastic experiments over a broad temperature range above and below Tg carried out for different polymers. The origin of the decrease in enthalpy was briefly discussed in terms of the chain dynamics in the isothermal condition.  相似文献   

4.
Self diffusion coefficients in supercooled orthoterphenyl (OTP) have been determined down toD t =3·10–14 m2s–1 using a1H-NMR technique applying static field gradients up to 53T m–1 In a range of more than two decades theD t values agree with those of photochromic tracer molecules of the same size determined by forced Rayleigh scattering down to the glass transition temperatureT g . A change of mechanism is found for translational diffusion atT c 1.2T g whereD t is proportional to the inverse shear viscosity –1 atT>T c butD t with =0.75 atT<T c . Rotational correlation times determined by2H-NMR stimulated echo techniques in deuterated OTP remain proportinal to –1 down toT g . Our results are discussed in relation with mode coupling theory and with models of cooperative motion at the glass transition.  相似文献   

5.
Dynamic mechanical spectroscopy and differential scanning calorimetry investigations of segmental dynamics are reported for net-poly(methyl methacrylate)-co-poly(n-butyl acrylate) copolymer networks. Three characteristic temperatures, namely, Vogel (T), glass transition (T g ), and crossover (T c ), were used to define cooperativity range and a new reduced temperature parameter (Solidness, S). The results showed that broadness of the α -dispersion (glass transition) and cooperativity length scale at the glass transition temperature decreased with increasing butyl acrylate content and T g -scaled temperature dependence of the relaxation time (fragility). However, the cooperativity range (T c –T), decreased with increasing fragility index. Furthermore, the solidness at T g (S(T g )) was nearly independent of chemical structure of the samples. Finally, a correlation was found between two measures of cooperativity length scale in the glass transition region, namely, average volume of cooperatively rearranging regions, V CRR , and the number of basic units in an act of rearrangement in the glass transition region, Z(T g ), determined from two completely independent experimental techniques.  相似文献   

6.
The molecular dynamics in thin films (18 nm-137 nm) of isotactic poly(methyl methacrylate) (i-PMMA) of two molecular weights embedded between aluminium electrodes are measured by means of dielectric spectroscopy in the frequency range from 50 mHz to 10 MHz at temperatures between 273 K and 392 K. The observed dynamics is characterized by two relaxation processes: the dynamic glass transition (α-relaxation) and a (local) secondary β-relaxation. While the latter does not depend on the dimensions of the sample, the dynamic glass transition becomes faster (≤2 decades) with decreasing film thickness. This results in a shift of the glass transition temperature T g to lower values compared to the bulk. With decreasing film thickness a broadening of the relaxation time distribution and a decrease of the dielectric strength is observed for the α-relaxation. This enables to deduce a model based on immobilized boundary layers and on a region displaying a dynamics faster than in the bulk. Additionally, T g was determined by temperature-dependent ellipsometric measurements of the thickness of films prepared on silica. These measurements yield a gradual increase of T g with decreasing film thickness. The findings concerning the different thickness dependences of T g are explained by changes of the interaction between the polymer and the substrates. A quantitative analysis of the T g shifts incorporates recently developed models to describe the glass transition in thin polymer films. Received 12 August 2001 and Received in final form 16 November 2001  相似文献   

7.
C. Dohare  A. Kumar 《Phase Transitions》2013,86(11-12):1064-1074
The calorimetric measurements have been made in glassy Se70Te30 and Se70Te28M2 (M?=?Ag, Cd, and Zn) alloys using non-isothermal differential scanning calorimetry technique to see the effects of Ag, Cd, and Zn additives on the glass transition kinetics of binary Se70Te30. From the heating rate dependence of glass transition temperature, T g, different kinetic parameters of glass transition have been evaluated. The composition dependence of glass transition temperature T g and the related activation energy (Et ) is also discussed.  相似文献   

8.
A crystallization study has been carried out for rapidly solidified Bi2Pb0.5Sr2Ca4Cu5Ox glass. Glass transition temperature T g, crystallized superconducting phases and microstructural changes were measured and analysed by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The crystallization mechanism of the three superconducting phases — (2201) 20 K phase, (2212) 80 K phase, and (2223) 110 K phase — has been discussed, and a time-temperature-transformation diagram for the glass has been constructed.  相似文献   

9.
The heat capacity of maltitol has been measured with an adiabatic calorimeter for the crystal from 100 K to 425 K (T m = 420 K), for the glass from 249 K to T g (around 311 K) and for the liquid from T g to 400 K. The heat of melting is 55.068 kJ/mol. The calorimetric glass transition occurs at about T g = 311 K with a sudden jump of the heat capacity ΔC p (T g ) of about 243.6 J/(K mol). The excess entropy between the undercooled liquid and the crystal was calculated from the heat capacity data and was used to estimate the Kauzmann temperature T K which was found 50 K below T g . ΔC p (T g ) and T K for maltitol were compared to other compounds like sugars, polyol and hydrogen bonded liquids. It has been found that the glass former maltitol is a "fragile" liquid on the thermodynamic point of view.  相似文献   

10.
We show that the dynamics of disordered charge density waves (CDWs) and spin density waves (SDWs) is a collective phenomenon. The very low temperature specific heat relaxation experiments are characterized by: (i) “interrupted” ageing (meaning that there is a maximal relaxation time); and (ii) a broad power-law spectrum of relaxation times which is the signature of a collective phenomenon. We propose a random energy model that can reproduce these two observations and from which it is possible to obtain an estimate of the glass cross-over temperature (typically T g≃ 100-200 mK). The broad relaxation time spectrum can also be obtained from the solutions of two microscopic models involving randomly distributed solitons. The collective behavior is similar to domain growth dynamics in the presence of disorder and can be described by the dynamical renormalization group that was proposed recently for the one dimensional random field Ising model [D.S. Fisher, P. Le Doussal, C. Monthus, Phys. Rev. Lett. 80, 3539 (1998)]. The typical relaxation time scales like ∼τexp(T g/T). The glass cross-over temperature Tg related to correlations among solitons is equal to the average energy barrier and scales like T g∼ 2xξΔ. x is the concentration of defects, ξ the correlation length of the CDW or SDW and Δ the charge or spin gap. Received 12 December 2001  相似文献   

11.
We consider QCD near but above critical temperature Tc. The pressure, susceptibilities and the renormalized Polyakov loop — which is an order parameter for the deconfining phase transition — dramatically change up to temperatures a few times Tc. We refer to this region as a “semi”-QGP, where partial confinement plays important role. We show that the shear viscosity η is suppressed by two powers of the Polyakov loop. This suggests that η/T3 decreases markedly as QCD cools down to temperatures near Tc. We also show a ratio of the viscosity to the entropy becomes small near Tc [Y. Hidaka and R.D. Pisarski, Phase," arXiv:0803.0453 [Phys. Rev. D (to be published)]].  相似文献   

12.
Excess free-volume trapping incurred by quenching has been quantified for atactic polystyrenes with different molecular weights. As the initial temperature (T0) is elevated from the glass transition (Tg), the increment in excess free-volume trapping first responds sharply, then becomes sluggish, and finally levels off. Molecular weight increase shifts the isochronal curves to a higher temperature region, which coincides with the isochronal change in glass transition temperature (Tg t)- As the isochronal curves are superposed to form a master curve, the mechanism of excess free-volume trapping is essentially controlled by T0, from which the conformational structures of molecules are determined prior to quenching, rather than by the final aging temperature. In order for this superposition to occur, conceivably, the content of excess free volume trapped in the glassy state has to be fairly constant throughout all temperatures below Tg. Consequently, this study does not support the existence of an underlying equilibrium extrapolated from the rubber state.  相似文献   

13.
A molecular dynamics simulation of a Stockmayer fluid with μ* = 1·0, ρ* = 0·7 and T* = 1·13 (±0·03) is reported. In addition to evaluations of a number of static properties, orientational time correlation functions Cl (t) = <P(cos δθ(t))> were calculated for l = 1 through 4 ; Pl is a Legendre polynomial and δθ(t) is the angle of reorientation of the dipole in time t. These time correlation functions are characteristic of nearly free rotation and agree well with curves calculated from a perturbation theory for the memory functions that utilizes the simulated value of the mean square torque. The angular velocity autocorrelation function for this fluid was also simulated and compared with perturbation theory. Agreement is not good, primarily because of the presence of a pronounced long time tail in the simulated function. The relationship between these results and those of other simulations and theories is discussed.  相似文献   

14.
Enthalpy recovery is not only an important characteristic of physical aging of glass, but also a good tool to investigate the physical aging. Using differential scanning calorimeter (DSC), the enthalpy recovery of Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass (BMG) was studied. The typical characteristics of enthalpy recovery of glass including the sub-T g peak and ‘overshot’ were found in BMG. The evolution of the sub-T g peak and ‘overshot’ were described by the free volume theory and Hodge’s model, respectively. It was found that the former failed to describe the enthalpy recovery in the BMG, while the latter could give a qualitative explanation. In combination with the dynamics in the BMG, the origin of the enthalpy recovery in the BMG was discussed. The results show that BMGs are an ideal material to investigate the physical aging. The further understanding of physical aging of BMGs is useful to clarify the nature of glass and improve the application and device of new types of BMGs. Supported by the National Natural Science Foundation of China (Grant No. 50671118)  相似文献   

15.
The glass transition temperature and the dynamics of the α-process have been investigated using dielectric relaxation spectroscopy for single and stacked thin films of poly(2-chlorostyrene) (P2CS). The stacked film consists of 10 layers of single thin films with thickness of 12 nm or 18 nm. The glass transition temperature T g of the single thin films of P2CS is found to decrease with decreasing film thickness in a similar way as observed for polystyrene thin films. The magnitude of the depression of T g for the stacked thin films is larger than that of the single thin films with corresponding thickness. The depression of the temperature at which the dielectric loss shows a peak due to the α-process at a given frequency, T α, is larger than that of the single thin films, although the magnitude is smaller than that of T g . Annealing at a high temperature could cause the T g and T α of the stacked thin films to approach the values of the bulk system.  相似文献   

16.
The viscosity of an amorphous polymeric solid above its glass transition [T g (T,P)] increases as the temperature of the solid is decreased or the pressure is increased. Under changes in temperature or pressure, molecular subunits in the polymeric solid undergo configurational changes. Such changes or relaxations have a distribution of relaxation strengths and times. As the solid is cooled or as the hydrostatic pressure on the solid is increased, the relaxation strengths increase and the relaxation times increase. These changes in relaxation or dynamic properties are very dramatic as the empirical T g is approached. Near T g the polymeric solid is no longer in volume equilibrium; continued cooling or pressuring at a time rate faster than the average relaxation time will produce a polymeric glass. This glass is a nonequilibrium, amorphous solid. If the glass is held at a fixed temperature and pressure very close to, but below, T g , the volume of the glass will be observed to relax to its equilibrium value. For temperatures and pressures well below T g , equilibrium is a much more conjectural concept since the relaxation times become extremely long. It has been proposed1,2 that there is a characteristic temperature T g at which an amorphous polymer undergoes a second-order transition to an equilibrium glass with zero configurational entropy (i.e., a noncrystallizable solid).  相似文献   

17.
Recent experiments have demonstrated that the dynamics in liquids close to the glass transition temperature is strongly heterogeneous. The characteristic size of these heterogeneities has been measured to be a few nanometers at T g. We extend here a recent model for describing the heterogeneous nature of the dynamics which allows both to derive this length scale and the right orders of magnitude of the heterogeneities of the dynamics close to the glass transition. Our model allows then to interpret quantitatively small probes diffusion experiments. Received 29 March 2002 and Received in final form 11 November 2002 RID="a" ID="a"e-mail: long@lps.u-psud.fr  相似文献   

18.
The evolution of autoadhesive strength, σ, with healing temperature, T h, at the symmetric amorphous polystyrene (PS)?PS interfaces of the samples with vitrified bulk has been used to characterize a low-temperature limit of the surface glass transition temperature T g surface(low). The existence of a linear relationship between the square root of σ and T h has been found for both polydisperse and monodisperse polymers. By the extrapolation of straight lines σ 1/2 ? T h to σ 1/2 = 0, the values of T g surface(low) have been determined and compared with those of a high-temperature limit of T g surface, T g surface(high), measured earlier. The differences between T g surface(low) and T g surface(high) have been found to be insignificant, 10–20°C. Using an average value of the shift of T g surface(low) with healing time, t h, the quasi-equilibrium value of the surface glass transition temperature of amorphous PS T surface has been estimated to be 10–15°C.  相似文献   

19.
We propose a way of making graphene superconductive by putting on it small superconductive islands which cover a tiny fraction of graphene area. We show that the critical temperature, T c , can reach several Kelvins at the experimentally accessible range of parameters. At low temperatures, T T c , and zero magnetic field, the density of states is characterized by a small gap E g T c resulting from the collective proximity effect. Transverse magnetic field H g (T) ∝ E g is expected to destroy the spectral gap driving graphene layer to a kind of a superconductive glass state. Melting of the glass state into a metal occurs at a higher field H g2(T). The article is published in the original.  相似文献   

20.
The effects of small substitutions of Si and Y on the glass-forming ability of a Cu55Hf25Ti20 glassy alloy are reported and discussed. Fully glassy rods with diameters up to 7 and 6.5 mm were produced for Cu54.5Hf25Ti20Si0.5 and Cu55? x Hf25Ti20Y0.3 alloys, respectively. The addition of Si enlarged ΔTx (= Tx ? T g, where T g and Tx are crystallisation and glass transition temperatures, respectively) considerably, from 25 to 53 K for the Cu54Hf25Ti20Si1 alloy. However, the results showed that the parameters obtained from thermal analysis, such as T rg , ΔTx and γ[= Tx /(T g + T l)] are not reliably correlated with the glass-forming ability (GFA), at least for these bulk glass-forming alloys. The scavenging effects of the Y and Si, in particular the possibility of Y reducing the oxides, could be responsible for enhancing the GFA. It is proposed that the effectiveness of small additions of Si in enhancing the GFA may be the result of the possible formation of HfSiO4 having a very large negative enthalpy of formation and, as a strong network former, it would form glassy particles which would be ineffective as nucleating agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号