首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the quantum Fisher information and the Heisenberg limit in superposition of a four-qubit symmetric state and two W states. Numerical and analytical calculations for quantum Fisher information and the Heisenberg limit of the four-qubit state are driven. It is shown that quantum Fisher information of the four-qubit state depends on the superposition coefficients and the relative phase. It is also shown that under certain conditions, the maximal quantum Fisher information occurred; which leads to the estimation sensitivity beats the Heisenberg limit.  相似文献   

2.
Quantum Secure Direct Communication with W State   总被引:12,自引:0,他引:12       下载免费PDF全文
A new theoretical scheme for quantum secure direct communication is proposed, where four-qubit symmetric W state functions as quantum channel. It is shown that two legitimate users can directly transmit the secret messages by using Bell-basis measurements and classical communication. The scheme is completely secure if the quantum channel is perfect. Even if the quantum channel is unsecured, it is still possible for two users to perform their secure communication. One bit secret message can be transmitted by sending a bit classical information.  相似文献   

3.

Recently, Wang et al. (Int J Theo Phys: pp. 3716–3726, 2018) proposed a multiparty quantum key agreement scheme with four-particles W state. Their protocol uses the delayed measurement technique, the block transmission technique, and the single decoy photon technique to determine a shared secret key between three or more participants. They claimed that their protocol could resist both internal/participant and external attacks. However, this work indicates that two dishonest participants can collude to get the private data of a participant who executes the protocol honestly. To solve this issue, a simple modification is suggested in this work.

  相似文献   

4.
A two-step deterministic secure quantum communication (DSQC) scheme using blocks of three-qubit W state is proposed. In this scheme, the secret messages can be encoded by employing four two-particle unitary operations and directly decoded by utilizing the corresponding measurements in Bell basis or single-particle basis. Comparing with most previous DSQC protocols, the present scheme has a high total efficiency, which comes up to 50%. Apartfrom this, it has still the advantages of high capacity as each W state can carry two bits of secret information, and high intrinsic efficiency because almost all the instances are useful. Furthermore, the security of this communication can be ensured by the decoy particle checking technique and the two-step transmitting idea.  相似文献   

5.
Based on four-qubit symmetric W state, the delayed measurement, decoy photos method, block transmission technique and the dense coding method, a multi-party quantum key agreement protocol is proposed. By utilizing the delayed measurement and decoy photos method, the fairness and security of the protocol are ensured. That is, the final generation key can be got fairly by m participants and the outside eavesdropper (includes Trojan-horse attacks, Measure-resend attack, Intercept-resend attack and Entangle-measure attack) and the dishonest participants attacks can be resisted in this protocol. By utilizing block transmission technique and the dense coding method, the efficiency of the protocol is improved. The efficiency analysis shows that the proposed protocol is more efficient than other multi-party QKA protocols.  相似文献   

6.
Entanglement swapping for four-qubit cluster-class states is studied. It is shown that a four-qubit cluster state (maximally entangled) can be obtained with a certain probability from two four-qubit cluster-class states by entanglement swapping. The probability is related to the smallest superposition coefficient of the cluster-class states (when all the moduli of amplitudes are equivalent, they are the usual cluster states and the probability hits to one). Two examples for the applications of the entanglement swapping are also presented. One is quantum teleportation of an arbitrary two-qubit state via a quantum repeater, in which the success probability can be improved by the entanglement swapping when the quantum channels are general cluster-class states (partially entangled). The other is quantum key distribution, in which a secret random sequence of bits (a “key”) can be efficiently established between two distant parties by the entanglement swapping of two groups of cluster states.  相似文献   

7.
A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.  相似文献   

8.

A teleportation protocol for certain class of ten-qubit state by utilizing an eight-qubit entangled state as a quantum channel has been proposed. In this paper, we present an optimal scheme for the teleportation of a ten-qubit state by using a stochastic local operation and classical communication(SLOCC) equivalent to four-qubit χ state as entanglement channel. Only von Neumann type measurement, controlled-not (CNOT) operations and appropriate unitary operations are needed in this scheme. Receiver Bob can reconstruct the initial state by introducing the appropriate unitary transformation and auxiliary particles.

  相似文献   

9.
In a quantum secure direct communication protocol, two remote parties can transmit the secret message directly without first generating a key to encrypt them. A quantum secure direct communication protocol using two-photon four-qubit cluster states is presented. The presented scheme can achieve a higher efficiency in transmission and source capacity compared with the proposed quantum secure direct communication protocols with cluster states, and the security of the protocol is also discussed.  相似文献   

10.
We propose a feasible scheme for implementing bidirectional quantum direct communication protocol using four-qubit cluster states. In this scheme, the quantum channel between the sender Alice and the receiver Bob consists of an ordered sequence of cluster states which are prepared by Alice. After ensuring the security of quantum channel, according to the secret messages, the sender will perform the unitary operation and the receiver can obtain different secret messages in a deterministic way.  相似文献   

11.
We present a novel scheme for deterministic secure quantum communication by using three-qubit Greenberger-Horne-Zeilinger (GHZ) state as quantum channel. It will be shown that secret messages can be encoded by employing four two-unitary collective operations, and decoded by Bell-basis measurements and some additional classical information. Security of the communication can be ensured by the order rearrangement of photon pairs techniques and the decoy photon checking technique. It has a high capacity as each GHZ state can carry two bits of information, and has a high intrinsic efficiency because almost all the instances except for the decoy checking photons (its number is negligible) are useful. Furthermore, this protocol is feasible with the present-day technique.  相似文献   

12.
Recently, Choudhury (Int. J. Theor. Phys. 10, 1007 2016), proposed a teleportation protocol of three-qubit state using four-qubit quantum channels.According to their scheme the three-qubit entangled states could be teleported by use of three simultaneous quantum channels of four-qubit cluster states. In this paper,we emphasize that the same three-qubit entangled states can be teleported perfectly by using only one quantum channel of four-qubit cluster states.  相似文献   

13.
In this paper, a Bell inequality is given to study the nonlocality of four-qubit states. It is shown that the inequality is maximally violated by the four-qubit state |ψ〉. Some other states, such as the state |χ〉, the cluster state, violate this inequality, too, but not maximally. And it is not violated by the four-qubit GHZ state. In addition, the state |ψ〉 also violates other bell inequalities, but not so optimally. Therefore the inequality can detect the entanglement of |ψ〉 well, experimentally.  相似文献   

14.
We devise an highly efficient protocol for remotely preparing a four-qubit entangled cluster-type state. In this protocol, two non-maximally entangled GHZ-type states are employed to link the sender Alice and the receiver Bob, and the to-be-prepared state can be reconstructed successfully with the probability of (b1b2)2 in general case. Then to achieve our concerns of constructing efficient remote preparation with higher success probability, some special ensembles of four-qubit states are minutely investigated. As a result, it is shown that the total probability of the RSP protocol, in these particular cases, can be improved to twice or even fourfold as that in general case.  相似文献   

15.
Multipartite quantum secure direct communication (MQSDC) enables multiple message senders to simultaneously and independently transmit secret messages to a message receiver through quantum channels without sharing keys. Existing MQSDC protocols all assume that all the communication parties are legal, which is difficult to guarantee in practical applications. In this study, a single-photon based three-party QSDC protocol with identity authentication is proposed. In the protocol, the message receiver first authenticates the identity of two practical message senders. Only when the identity authentication is passed, the legal message senders can encode their messages by the hyper-encoding technology. In theory, two bits of messages can be transmitted to the message receiver in a communication round. The protocol can resist the external attack and internal attack, and guarantee the security of the transmitted messages and the identity codes of each legal message sender. The secret message capacity of the protocol is simulated with two-decoy-state method. The maximal communication distance between any two communication parties can reach $\approx$ 31.75 km with weak signal and decoy state pulses. The three-party QSDC protocol can be extended to a general MQSDC protocol and has important application in the further practical MQSDC field.  相似文献   

16.
Recently, Liu et al. (Opt. Commun. 284:3160, 2011) proposed a protocol for quantum private comparison of equality (QPCE) based on symmetric W state. However, Li et al. (Eur. Phys. J. D 66:110, 2012) pointed out that there is a flaw of information leak, and they proposed a new protocol based on EPR pairs. While examining these two protocols, we find that there exists a same flaw: the third party (TP) can know the comparison result. In this paper, through introducing and constructing a special class of asymmetric W state, a secure QPCE protocol based on this asymmetric W state is presented. Analysis shows the present protocol can not only effectively avoid the information leak found by Li et al., but also ensure TP would not get any information about the comparison result.  相似文献   

17.
Recently, Yeo and Chua introduced a genuine four-qubit entangled state |χ〉 which can implement perfect teleportation of an arbitrary two-qubit state [Y. Yeo, W.K. Chua, Phys. Rev. Lett. 96 (2006) 060502]. It has been shown that the state |χ〉 is inequivalent to the well-known Greenberger-Horne-Zeilinger state, W state, and linear cluster state, in terms of stochastic local operations and classical communication [C.F. Wu, Y. Yeo, L.C. Kwek, C.H. Oh, Phys. Rev. A 75 (2007) 032332]. This “new” class of state has many interesting entanglement properties and possible applications in quantum-information processing and fundamental tests of quantum mechanics. Here, we propose a simple scheme to generate the state |χ〉 in cavity quantum electrodynamics. Our idea may be helpful for in-depth study on such a class of state and its practical applications.  相似文献   

18.
This paper we proposed an efficient quantum dialogue scheme by using three-particle entangled W state. In this scheme, the legitimate user Alice and Bob can exchange their secret messages with the help of unitary operations, and each W state can carry two bits of secret messages. Almost all the emitted particle can be used to carry the secret message besides the decoy photons, the intrinsic efficiency for qubits approaches the value 100 %. By joining the decoy particle checking technique and the step-transmitting idea to ensure the safety and reliability of communication.  相似文献   

19.
刘大明  王艳伟  江秀梅  郑亦庄 《中国物理 B》2010,19(2):20307-020307
A criterion for he tquantum teleportation of an arbitrary N-particle state via a 2N-particle quantum channel is presented by introducing a term of the "judgment operator". Using the criterion, not only the qualitative judgment of the possibility of successful teleportation can be made but also the quantitative calculation of the probability of successful teleportation can be explicitly given. In addition, a new genuine four-qubit entangled state is proposed, which could not belong to the category of previously known states under stochastic local operations and classical communication.  相似文献   

20.
The three-qubit W state, with an important feature that each pair of it’s qubits has the same and maximum amount of bipartite entanglement, can be reduced to an entangled 2-qubit system if one of its qubits is lost. Recently, Xue et al. proposed a three-party quantum secret sharing (QSS) protocol based on the three-qubit W state [Chinese Phys. 15, 7 (2006)]. Also, Joo et al. proposed a pair-wise quantum key distribution protocol among three users based on a special measurement on the three-qubit W state [eprint arXiv:quant-ph/0204003v2 (2002)]. This study aims to propose a novel quantum key distribution protocol (QKDP) for arbitrary two communications based on the dense coding and the special measurement of three-qubit W state with the X basis and the Z basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号