首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Several new complexes of organotin(IV) moieties with MCln[meso-tetra(4-sulfonatophenyl)porphine], (R2Sn)2MCln[meso-tetra(4-sulfonatophenyl)-porphinate]s and (R3Sn)4MCln [meso-tetra(4-sulfonatophenyl)porphinate]s, [M = Fe(III), Mn(III): n = 1, R = Me, n-Bu; Ph; M = Sn(IV): n = 2, R = Me, n-Bu] have been synthesized and their solid state configuration investigated by infrared (IR) and Mössbauer spectroscopy, and by 1H and 13C NMR in D2O.The electron density on the metal ion coordinated inside the porphyrin ring is not influenced by the organotin(IV) moieties bonded to the oxygen atoms of the side chain sulfonatophenyl groups, as it has been inferred on the basis of Mössbauer spectroscopy and, in particular, from the invariance of the isomer shift of the Fe(III) and Sn(IV) atoms coordinated into the porphyrin square plane of the newly synthesized complexes, with respect to the same atoms in the free ligand.As far as the coordination polyhedra around the peripheral tin atoms are concerned, infrared spectra and experimental Mössbauer data would suggest octahedral and trigonal bipyramidal environments around tin, in polymeric configurations obtained, respectively, in the diorganotin derivatives through chelating or bridging sulfonate groups coordinating in the square plane, and in triorganotin(IV) complexes through bridging sulfonate oxygen atoms in axial positions.The structures of the (Me3Sn)4Sn(IV)Cl2[meso-tetra(4-sulfonatophenyl)porphinate] and of the two model systems, Me3Sn(PS)(HPS) and Me2Sn(PS)2 [HPS = phenylsulfonic acid], have been studied by a two layer ONIOM method, using the hybrid DFT B3LYP functional for the higher layer, including the significant tin environment. This approach allowed us to support the structural hypotheses inferred by the IR and Mössbauer spectroscopy analysis and to obtain detailed geometrical information of the tin environment in the compounds investigated.1H and 13C NMR data suggested retention of the geometry around the tin(IV) atom in D2O solution.  相似文献   

2.
Eight new organostannoxane-based multiredox assemblies containing-Schiff-base-triazole ligand peripheries have been readily synthesized by hydrolysis or solvothermal synthetic routes. The reactions of the diorganotin dichloride with the Schiff-base-containing-triazole ligand afford the following types: [(Me2Sn)2O2(Ln)]2 (n = 1, for 1) [(Me2Sn)2O(RO)(Ln)]2 (R = Et, n = 2, for 2; R = Me, n = 3, for 3), [(n-Bu2Sn)2O2(Ln)]2 (n = 1, for 4; n = 2, for 5; n = 3, for 6) and [(Me2Sn)2Ln2O]2 · L (n = 2; L = H2O for 7, L = CH3OH for 8). All the complexes were characterized by elemental analysis, IR, 1H, 13C and 119Sn spectra analyses. Except for complexes 4 and 6, the other complexes are also characterized by X-ray crystallography diffraction analyses. Complexes 1-3 and 5 show similar structures containing a Sn4O4 ladder-shaped skeleton in which the N atom from a corresponding thione-form deprotonated Schiff base coordinated to the exo tin atoms in monodentate chelating agent. Complex 7 and 8 show a novel framework containing a Sn2O2 symmetrical core with two N atoms from triazole moiety coordinated to tin atoms. Weak but significant intermolecular hydrogen bondings, C-H?π stacking or non-bonded S?S interaction lead to aggregation and self-assembly of these complexes into 1D, 2D or 3D supramolecular frameworks.  相似文献   

3.
The reactions of dimethyl-, diethyl- and dibutyltin(IV) oxides with pyridoxine (PN) in toluene/ethanol led to the formation of compounds [SnR2(PN-2H)] which were characterized by EI and FAB mass spectrometry and by IR, Raman, Mössbauer and 1H, 13C and 119Sn NMR spectroscopy. The structures of [SnEt2(PN-2H)] · CH3OH, [SnBu2(PN-2H)] and [SnEt2(PN-2H)(DMSO)] were determined by X-ray diffractometry. The first two contain dimeric [SnR2(PN-2H)]2 units in which two bridging-chelating pyridoxinate anions link the Sn atoms, while in [SnEt2(PN-2H)(DMSO)] the DMSO coordinates to the tin atom via its O atom in a similar dimeric unit.  相似文献   

4.
The molecular structures of the isatin Schiff bases of S-methyldithiocarbazate (Hisasme) and S-benzyldithiocarbazate (Hisasbz) have been determined by X-ray diffraction and their complexes of general formula [ML2n(solvate) [M = Co2+, Ni2+, Zn2+; L = anionic forms of Hisasme or Hisasbz; solvate = DMF, DMSO; n = 1, 2] and [Sn(L)Ph2Cl]·nMeOH (n = 0, 1) have been synthesized and characterized by a variety of physicochemical techniques and X-ray diffraction. The bis-ligand complexes, [Ni(isasbz)2]·2DMSO and [Co(isasme)2]·DMF have a six-coordinate, distorted octahedral geometry with the two uninegatively charged tridentate ONS ligands coordinated to the metal ions meridionally via the amide O-atoms, the azomethine nitrogen atoms and the thiolate sulfur atoms. By contrast, the crystal structure of [Zn(isasbz)2]·2DMF shows a four-coordinate distorted tetrahedral geometry with the two Schiff bases coordinated as NS bidentate ligands via the azomethine nitrogen atoms and the thiolate sulfur atoms. Steric constraints of the rigid tridentate ligands lead to unusual ‘pseudo-coordination’ of the O-donors which occupy sites close to the metal but too distant to be considered as true coordinate bonds.The crystal structures of the tin(IV) complexes [SnLPh2Cl]·nMeOH (L = isasme and isasbz; n = 0, 1) also show that the Schiff bases act as monoanionic bidentate NS chelating agents coordinating the tin(IV) ion via the azomethine nitrogen atoms and the thiolate sulfur atoms, the tin atom in each complex is five-coordinate with a highly distorted geometry intermediate of square pyramidal and trigonal bipyramidal. Again Sn?O contacts are weak and do not qualify as coordinate bonds.  相似文献   

5.
The complex [(C6H5)2SnCl(HMNA)] (1) where H2MNA is thioamide 2-mercapto-nicotinic acid has been synthesized by reacting a methanolic solution of di-chloro-di-phenyltin(IV) Ph2SnCl2 with an aqueous solution of 2-mercapto-nicotinic acid, containing twofold amount of potassium hydroxide. The Sn/ligand molar ratio is 2:1. The complex was characterized by elemental analysis, FT-IR and Mössbauer spectroscopic techniques. In addition the crystal structure of the molecule was determined by an X-ray diffraction at 293(2) K. C18H14ClNO2SSn is monoclinic, space group P21/n, a = 15.089(3) Å, b = 15.846(3) Å, c = 16.691(3) Å, β = 105.57(3)°, Z = 8. The ligand coordinates to the metal center through the exocyclic sulfur and the heterocyclic nitrogen atoms, forming a four membered ring. The coordination sphere around the tin(IV) ion is completed with two carbon atoms from the two phenyl groups and one chlorine atom. The geometry around the tin atom can be described either as trigonal bipyramidal or tetragonal pyramidal. Finally, the influence of the complex [(C6H5)2SnCl(HMNA)] (1) upon the catalytic peroxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase (LOX) was also kinetically and theoretically studied and the results compared with the ones of the corresponding binuclear complex [(C6H5)3Sn(MNA)Sn(C6H5)3 · (acetone)] (2) reported in the literature.  相似文献   

6.
《Polyhedron》1987,6(8):1639-1645
Dimethyltin(IV) complexes with formulae Me2Sn(IMDA)·H2O, Me2Sn(ODA)· H2O and [Me2Sn(OH)]2(TDA) [IMDA2− = iminodiacetate2− (NOO); ODA2− = oxydiacetate2− (OOO); and TDA2− = thiodiacetate2− (SOO donor atoms)] have been obtained and their solid state coordination investigated. Infrared and Mössbauer spectroscopic evidence would suggest tridentate behaviour of the ligands in polymeric trans-dimethyl structures for Me2Sn(IMDA)·H2O and Me2Sn(ODA)·H2O with bridging carboxylate groups; polymeric tetrahedral environments around the two tin(IV) atoms could be inferred with TDA acting as bidentate dianionic ligand through ester type carboxylate groups in [Me2Sn(OH)]2(TDA), without involvement of the sulfur atom in coordination.  相似文献   

7.
A series of new triorganotin(IV) pyridinecarboxylates with 6-hydroxynicotinic acid (6-OH-3-nicH), 5-hydroxynicotinic acid (5-OH-3-nicH) and 2-hydroxyisonicotinic acid (2-OH-4-isonicH) of the types: [R3Sn (6-OH-3-nic)·L]n (I) (R = Ph, L = Ph·EtOH, 1; R = Bn, L = H2O·EtOH, 2; R = Me, L = 0, 3; R = n-Bu, L = 0, 4), [R3Sn (5-OH-3-nic)]n (II) (R = Ph, 5; R = Bn, 6; R = Me, 7; R = n-Bu, 8), [R3Sn (2-OH-4-isonic·L)]n (III) (R = Bn, 9, L = MeOH; R = Me, L = 0, 10; R = Ph, 11, L = 0.5EtOH) have been synthesized. All the complexes were characterized by elemental analysis, TGA, IR and NMR (1H, 13C, 119Sn) spectroscopy analyses. Among them, except for complexes 5 and 6, all complexes were also characterized by X-ray crystallography diffraction analysis. Crystal structures show that complexes 1-10 adopt 1D infinite chain structures which are generated by the bidentate O, O or N, O and the five-coordinated tin centers. Significant O-H?O, and N-H?O intermolecular hydrogen bonds stabilize these structures. Complex 11 is a 42-membered macrocycle containing six tin atoms, and forms a 2D network by intermolecular N-H?O hydrogen.  相似文献   

8.
Three diorganotin(IV) complexes of the type, [R2Sn(LaH)(LbH)] (R = nBu or Me and, LaH and LbH are two different 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoate residues; a: aryl = 4′-Cl-(held constant) and b: aryl = 4′-Me or 4′-Br) have been prepared either by reacting nBu2SnO, LaHH′ and LbHH′ (1:1:1) in anhydrous toluene or by reacting Me2SnCl2, LaHNa and LbHNa (1:1:1) in anhydrous methanol. The products were characterized by microanalysis, IR, NMR (1H, 13C, 119Sn) and 119mSn Mössbauer spectroscopy. A full characterization of the structures of the complexes [nBu2Sn(LaH)(LbH)] (1 and 2) and [Me2Sn(LaH)(LbH)] (3) in the solid state were accomplished by single crystal X-ray crystallography. These complexes were found to adopt the usual dicarboxylato structural type with a skew-trapezoidal bipyramidal arrangement around the tin atom.  相似文献   

9.
The di- and triorganotin(IV) derivatives of anthracenecarboxylic acid, Ph2MeSnOC(O)C14H9 (2), Me3SnOC(O)C14H9 (3), Me2Sn[OC(O)C14H9]2 · CH3OH (4) Ph3SnOC(O)C14H9 · CH3OH (5), Ph2EtSnOC(O)C14H9 (6), Ph2Sn[OC(O)(C14H9)]2 (7) and PhMe2SnOC(O)C14H9 (8) were synthesized by the reaction of Ph2MeSnI, Me3SnCl, Me2SnCl2, Ph3SnCl, Ph2EtSnI, Ph2SnCl2, and PhMe2SnI with 9-anthracenecarboxylic acid, respectively, with the aid of potassium iso-propoxide. All complexes were characterized by elemental analysis, mass spectrometry, IR, 1H, 13C and 119Sn NMR spectroscopes. The molecular structures of complexes 2, 3 and 4 were determined by single crystal X-ray analysis. The X-ray structures reveal that complex 2 and 3 adopt a polymeric trans-C3SnO2 trigonal bipyamidal configuration with the oxygen atoms occupying axial positions. Complex 4 adopts a monomeric structure with two carboxylates coordinated to tin in a monodentate form from axial and equatorial positions, and with the coordination number raised to five as the methanol occupies the apical position of the trigonal bipyramid.  相似文献   

10.
New complexes of the general formula, [M(H2dap4NMetsc)(H2O)2](NO3)2·H2O (M = Zn2+, Cd2+; H2dap4NMetsc = 2,6-diacetylpyridinebis(4N-methylthiosemicarbazone) and [Sn((dap4NMetsc)X2] (X = Ph, Cl and I) (dap4NMetsc = the doubly deprotonated form of 2,6-diacetylpyridine bis(4N-methylthiosemicarbazone) have been synthesized and structurally characterized by a variety of physico-chemical techniques. X-ray crystallographic structure determination shows that in the zinc and cadmium complexes, the bis(thiosemicarbazone) ligand coordinates as a neutral N3S2 pentadentate chelating agent through the two azomethine nitrogen atoms, the pyridine nitrogen atom and the two thione sulfur atoms. The N3S2 donors of the ligand occupy the equatorial plane and the two aqua ligands occupy the sixth and seventh axial positions of the seven-coordinated cadmium(II) and zinc(II) ions. In the tin(IV) complexes, however, the thiosemicarbazone is coordinated to the tin(IV) ion as a dinegatively charged pentadentate chelating agent via the pyridine nitrogen atom, the two azomethine nitrogen atoms and the two thiolate sulfur atoms. The two apical positions of the seven-coordinate tin(IV) ion are occupied by either phenyl, chlorido or iodido ligands. In each of the complexes, the overall geometry adopted by the metal ion may be considered as a distorted pentagonal-bipyramid.  相似文献   

11.
Four new nickel(II) phthalate compounds: mononuclear complexes [Ni(Im)]6(Pht)·H2O (1), [Ni(Pht)(Im)3(H2O)2]·H2O (2) and [Ni(Pht)(2-MeIm)3(H2O)3]·H2O (3), and coordination polymer [Ni(Pht)(4-MeIm)2(H2O)]n (4) (where Pht = dianion of o-phthalic acid, Im = imidazole, 2-MeIm = 2-methylimidazole, 4-MeIm = 4-methylimidazole) have been synthesized. The complexes 14 were characterised by elemental analysis, IR data, thermogravimetric, and X-ray diffraction analyses. X-ray analysis shows that the asymmetric unit of 1 consists of [Ni(Im)]62+ cation, Pht2− anion and solvate H2O molecule. The phthalate dianion does not take part in coordination to metal ion. The cations, anions and water molecules are linked via   N–H??O and O–H??O interactions forming 2D hydrogen-bonded networks. The structures of 2 and 3 are similar to other mononuclear Ni(II) phthalate complexes where Pht2− anions act as monodentate ligands and uncoordinated carboxylate oxygen atoms participate in the formation of hydrogen bonded double-chains. The structure of 4 consists of [Ni(4-MeIm)2(H2O)] building units connected by phthalate ions to form helical chains. The complexes 14 were tested for their ability to increase the biosynthesis of enzymes.  相似文献   

12.
Compounds of the type [Ag(PPh3)3(HL)] {H2xspa=3(aryl)-2-sulfanylpropenoic acids: x = Clp [3-(2-chlorophenyl)-], -o-mp [3-(2-methoxyphenyl)-], -p-mp [3-(4-methoxyphenyl)-], -o-hp [3-(2-hydroxyphenyl)-], -p-hp [3-(4-hydroxyphenyl-); H2cpa = 2-cyclopentylidene-2-sulfanylacetic acid} were synthesized and characterised by IR and NMR (1H 13C and 31P) spectroscopy and by FAB mass spectrometry. The crystal structures of [Ag(PPh3)3(HClpspa)], [Ag(PPh3)3(H-o-mpspa)], [Ag(PPh3)3(H-p-mpspa)] and [Ag(PPh3)3(Hcpa)] reveal the presence of discrete molecular units containing an intramolecular O-H···S hydrogen bond between the S atom and one of the O atoms of the COOH group. This intramolecular hydrogen bond remains in [Ag(PPh3)3(H-o-hpspa)]·EtOH and [Ag(PPh3)3(H-p-hpspa)] but in both cases polymeric structures are built on the basis of O-H···O interactions that involve the -OH substituent of the phenyl group of the sulfanylpropenoate fragment.  相似文献   

13.
Novel heteroscorpionate-containing tin and organotin(IV) complexes, [SnRnX3 − n(L)], R = Me, Bun, Ph, or cy; X = Cl, Br or I, n = 0, 1, 2 or 3; L = bis(pyrazol-1-yl)acetate (bpza) or bis(3,5-dimethylpyrazol-1-yl)acetate (bdmpza), have been synthesized and characterized by spectral (IR, 1H, 13C and 119Sn NMR, 119mSn Mössbauer) and analytical data. In [SnI3(bdmpza)], the ligand is fac-N,N′,O-tridentate, the three iodine atoms thus also fac about the six-coordinate tin(IV) atom. Neutral bpzaH reacts with BunSnCl3, PhSnCl3 and SnCl4 in Et2O in the absence of base, yielding 1:1 adducts [XSnCl3(bpzaH)] (X = R or Cl).  相似文献   

14.
15.
Potentiometric studies of the interaction of (Me2Sn)2+ and (Me3Sn)+ with 5′-guanosine monophosphate [(5′-HGMP)2?, abbreviated as (HL-1)2?] and guanosine [(HGUO), abbreviated as (HL-2)] in aqueous solution (I = 0.1 mol·dm?3 KNO3, 298.15 ± 0.1 K) were performed, and the speciation of various complex species was evaluated as a function of pH. The species that exist at physiological pH ~7.0 are Me2Sn(HL-1)/[Me2Sn(HL-2)]2+ (87.0/88.8 %), [Me2Sn(HL-1)(OH)]?/[Me2Sn(HL-2)(OH)]+ (3.0/0 %) and [Me2Sn(HL-1H?1)]/[Me2Sn(HL-2H?1)]2+ (9.4/6.6 %) for 1:1 dimethyltin(IV):5′-guanosine monophosphate/dimethyltin(IV): guanosine systems, whereas for the corresponding 1:2 systems, the species are Me2Sn(HL-1)/[Me2Sn(HL-2)]2+ (44.0/92.0 %), [Me2Sn(HL-1H?1)]/[Me2Sn(HL-2H?1)]2+ (5.0/6.0 %), Me2Sn(OH)2 (49.0/0 %), [Me2Sn(HL-1)(OH)]?/[Me2Sn(HL-2)(OH)]+ (1.5/2.0 %), and [Me2Sn(OH)]+ (1.0/0 %). For 1:1 trimethyltin(IV):5′-guanosine monophosphate/trimethyltin(IV):guanosine systems, only [Me3Sn(HL-1)]?/[Me3Sn(HL-2)]+ (99.9 %) are found at pH = 7.0, whereas for 1:2 systems, [Me3Sn(HL-1)]?/[Me3Sn(HL-2)]+ (49.8/100 %), Me3Sn(OH) (15.0/0 %) and [Me3Sn(HL-1)(OH)]2?/Me3Sn(HL-2)(OH) (0.2/0 %) are the species found. No polymeric species were detected. Beyond pH = 8.0, significant amounts of [Me2Sn(OH)]+, Me2Sn(OH)2, [Me2Sn(OH)3]? and Me3Sn(OH) are formed. Multinuclear (1H, 13C and 119Sn) NMR studies at different pHs indicated a distorted octahedral geometry for the species Me2Sn(HL-1)/[Me2Sn(HL-2)]2+ in dimethyltin(IV)-(HL-1)2?/(HL-2) systems and a distorted trigonal bipyramidal/distorted tetrahedral geometry for the species [Me3Sn(HL-1)]?/[Me3Sn(HL-2)]+ in trimethyltin(IV)-(HL-1)2?/(HL-2) systems.  相似文献   

16.
The organotin flufenamates [Me2(flu)SnOSn(flu)Me2]2 (1), [Bu2(flu)SnOSn(flu)Bu2]2 (2) and [Bu2Sn(flu)2] (3) have been prepared and structurally characterized by means of vibrational and NMR (1H, 13C and 119Sn) spectroscopy. The crystal structure of [Me2(flu)SnOSn(flu)Me2]2 (1) has been determined by X-ray crystallography. Three distannoxane rings are present to the dimeric tetraorganodistannoxane of planar ladder arrangement. The structure is centro-symmetric and features a central rhombus Sn2O2 unit with two additional tin atoms linked at the O atoms. Six-coordinated tin centers are present in the dimer distannoxane. This structure is self-assembled via π → π and C-H → π stacking interactions. Flufenamic acid and flufenamates were evaluated for antiproliferative activity in vitro. Among the compounds tested [Bu2(flu)SnOSn(flu)Bu2]2 (2) and [Bu2Sn(flu)2] (3) exhibited high cytotoxic activity against the cancer cell line A549 (non-small cell lung carcinoma).  相似文献   

17.
Four new nickel(II) complexes, [{Ni(L)}2], [NiL · HPyr], [NiL · HIm] and [Ni(HL)2] · H2O, derived from diacetylmonoxime-S-benzyldithiocarbazonate (H2L) have been synthesized and characterized by elemental analyses, field desorption and electrospray ionization mass spectra, UV–Vis, infrared absorption spectra, as well as 1H NMR spectra. X-ray molecular structures showed that the Ni(II) in both [NiL · HPyr] and [NiL · HIm] are in a distorted square planar environment and is coordinated to the dianionic NNS tridentate hydrazoneoxime ligand via deprotonated oximate nitrogen, hydrazone imine nitrogen, and thiolate sulphur. The fourth coordination sites are occupied, respectively, by the pyrazole and imidazole nitrogens. The oximate O1 of [NiL · HPyr] is involved in intramolecular hydrogen bond with the pyrazole NH proton as well as intermolecular hydrogen bond pyrazole C6H proton, forming a helical chain propagating along the b-axis. The structure is stabilized by a set of π?π and CH?π interactions. The molecular units in [NiL · HIm] are linked together by hydrogen bond formation between the oximate oxygen and imidazole NH proton, giving rise to an infinite zigzag chain extended along the a-axis. The chains are interconnected by π?π and CH?O interactions. In [Ni(HL)2] · H2O, the Ni(II) is in a distorted octahedral environment. The two mononegative hydrazoneoxime ligands are coordinated in the meridional configuration where the two thiol sulphur atoms and the two oxime nitrogen atoms are cis to each other, while the imine nitrogen atoms are trans. The oxime proton O2H is involved in a reciprocal bifurcated hydrogen bond formation with both N2 and S3 of the adjacent molecule giving rise to hydrogen bonded dimer. This dimeric structure is further stabilized by a pair of reciprocal CH?O interactions. A one dimensional chain of alternating dimeric unit and water molecule propagating along the c-axis is formed via hydrogen bond formation between the oxime O1 oxygen and the bridged water molecule proton.  相似文献   

18.
The monocationic chloro complexes containing chelating 1,10-phenanthroline (phen) ligands [(arene)Ru(N∩N)Cl]+ (1: arene = C6H6, N∩N = phen; 2: arene = C6H6, N∩N = 5-NO2-phen; 3: arene = p-MeC6H4Pri, N∩N = phen; 4: arene = p-MeC6H4Pri, N∩N = 5-NO2-phen; 5: arene = C6Me6, N∩N = phen; 6: arene = C6Me6, N∩N = 5-NO2-phen; 7: arene = C6Me6, N∩N = 5-NH2-phen) have been prepared and characterised as the chloride salts. Hydrolysis of these chloro complexes in aqueous solution gave, upon precipitation of silver chloride, the corresponding dicationic aqua complexes [(arene)Ru(N∩N)(OH2)]2+ (8: arene = C6H6, N∩N = phen; 9: arene = C6H6, N∩N = 5-NO2-phen; 10: arene = p-MeC6H4Pri, N∩N = phen; 11: arene = p-MeC6H4Pri, N∩N = 5-NO2-phen; 12: arene = C6Me6, N∩N = phen; 13: arene = C6Me6, N∩N = 5-NO2-phen; 14: arene = C6Me6, N∩N = 5-NH2-phen), which have been isolated and characterised as the tetrafluoroborate salts. The catalytic potential of the aqua complexes 8-14 for transfer hydrogenation reactions in aqueous solution has been studied: complexes 12 and 14 catalyse the reaction of acetophenone with formic acid to give phenylethanol and carbon dioxide with turnover numbers around 200 (80 °C, 7 h). In the case of 12, it was possible to observe the postulated hydrido complex [(C6Me6)Ru(phen)H]+ (15) in the reaction with sodium borohydride; 15 has been characterised as the tetrafluoroborate salt, the isolated product [15]BF4, however, being impure. The molecular structures of [(C6Me6)Ru(phen)Cl]+ (1) and [(C6Me6)Ru(phen)(OH2)]2+ (12) have been determined by single-crystal X-ray structure analysis of [1]Cl and [12](BF4)2.  相似文献   

19.
Five new copper(II) complexes [Cu(dbsf)(H2O)]n · 0.5n(i-C3H7OH) (1), [Cu(dbsf)(4,4′-bpy)0.5]n · nH2O (2), [Cu(dbsf)(2,2′-bpy)(H2O)]2 · (n-C3H7OH) · 0.5H2O (3), [Cu(dbsf)(phen)(H2O)]2 · 1.5H2O (4) and [Cu(dbsf)(2,2′-bpy)(H2O)]n · n(i-C3H7OH) (5) (H2dbsf = 4,4′-dicarboxybiphenyl sulfone, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline, i-C3H7OH = isopropanol, n-C3H7OH = n-propanol) have been synthesized under hydro/solvothermal conditions. All of the complexes are assembled from V-shaped building blocks, [Cu(dbsf)]. Complex 1 is composed of 1D double-chains. In complex 2, dbsf2− ligands and 4,4′-bpy ligands connect Cu(II) ions into catenane-like 2D layers. These catenane-like 2D layers stack in an ABAB fashion to form a 3D supramolecular network. Complexes 3 and 4 are 0D dimers, in which two [Cu(dbsf)] units encircle to form dimetal macrocyclic molecules. However, in complex 5, the V-shaped building blocks [Cu(dbsf)] are joined head-to-tail, resulting in the formation of infinite tooth-like chains. The different structures of complexes 3 and 5 may be attributed to the different solvent molecules included.  相似文献   

20.
Summary The liquid phase oxidation of gold in donor-acceptor organic and aqueous-organic media has been studied. The compounds [AuCl(Me2S)], [AuBr(Me2S)], [AuBr3(Me2S)], [Me3S][AuBr4], [Me3S][AuBr4(Me2S)]·H2O, [Me3SO]-[AuBr4]·H2O, [Me3S][Au2Br7(Me2S)2]·3H2O, [Me3S]2-[Au2Br8]·2DMSO·H2O, [Me2(Bu)SO][AuBr4]·H2O and [Me3S]Br were isolated by dissolution of Au0 in DMSO-RX mixtures (R = H or Bu; X = Cl or Br). The products were characterized by elemental analysis and i.r. spectroscopy. The nature of the Au0-DMSO-RX systems and the oxidant species are discussed in terms of a newly-developed concept of donor-acceptor electron transport (DAET) systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号