首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The chemiluminescence (CL) kinetics in U(IV) oxidation by atmospheric oxygen in aqueous HClO4 has been investigated. The CL quantum yield (ηCL, E/(mol U(IV))) in this reaction is 1.4 × 10?8. The elementary event generating the CL emitter, which is the electronically excited uranyl ion *(UO 2 2+ ), is electron transfer from the uranyl ion UO 2 + to the oxidizer (·OH radical). The Ag+ ion quenches CL, and the Cu2+ ion enhances CL.  相似文献   

2.
Light emission from aqueous solutions of HClO4 containing U4+ and S2O8 2? has been observed. The emitter of chemiluminescence (CL) is the electron-excited uranyl ion (*UO 2 2+ ), the product of U4+ oxidation. A hundredfold decrease in the HClO4 concentration (from 1 to 0.01 mol L?1) results in a 250-fold increase in the reaction rate constant, a 5000-fold increase in the initial CL (from 4·105 to 2·109 photon s?1), a more than tenfold increase in the CL yield (from 5.6·10?8 to 1.6·10?6), and a 200-fold increase in the excitation yield of UO 2 2+ (from 6·10?6 to 1.3·10?3). The kinetic isotope effect of the reaction has been studied. The value for the ratio of the rate constantsk H/k D=2.1 has been determined by extrapolation to the 100% degree of deuteration of 0.1M perchloric acid. The peculiarities of the chemiluminescence stage in the reaction of U4+ oxidation in solutions of potassium persulfate were explained by the participation of the products of hydrolysis of the U4+ aqua ion (UOH3+ and U(OH) 2 2+ ), whose relative fraction increases as the HClO4 concentration decreases.  相似文献   

3.
Two mononuclear uranyl complexes, [UO2L1] ( 1 ) and [UO2L2] ⋅ 0.5 CH3CN ⋅ 0.25 CH3OH ( 2 ), have been synthesized from two multidentate N3O4 donor ligands, N,N′-bis(5-methoxysalicylidene)diethylenetriamine (H2L1) and N,N′-bis(3-methoxysalicylidene)diethylenetriamine (H2L2), respectively, and have been structurally characterized. Both complexes 1 and 2 showed a reversible UVI/UV couple at −1.571 and −1.519 V, respectively, in cyclic voltammetry. The reduction potential of the UVI/UV couple shifted towards more positive potential on addition of Li+, Na+, K+, and Ag+ metal ions to acetonitrile solutions of complex 2 , and the resulting potential was correlated with the Lewis acidity of the metal ions and was also justified by theoretical DFT calculations. No such shift in reduction potential was observed for complex 1 . All four bimetallic products, [UO2L2Li0.5](ClO4)0.5 ( 3 ), [UO2L2Na(ClO4)]2 ( 4 ), [UO2L2Ag(NO3)(H2O)] ( 5 ), and [(UO2L2)2K(H2O)2]PF6 ( 6 ), formed on addition of the Li+, Na+, Ag+, and K+ metal ions, respectively, to acetonitrile solutions of complex 2 , were isolated in the solid state and structurally characterized by single-crystal X-ray diffraction. In all the species, the inner N3O2 donor set of the ligand encompasses the equatorial plane of the uranyl ion and the outer open compartment with O2O′2 donor sites hosts the second metal ion.  相似文献   

4.
Chemiluminescence (CL) in oxidation of organosodium compounds by O2 in THF was studied. Emitters of CL are excited complexes of polycyclic aromatic hydrocarbons, excimers1(R·R)*. The mechanism of their formation was proposed. The Na+, R.−+O2 CL system is a unique source for the selective generation of excimers of aromatic hydrocarbons. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 284–288, February, 1997.  相似文献   

5.
We report the results of a calorimetric study on the hydrolysis of UO22+ in different ionic media (NaClO4 aq, NaClaq) at 25 °C. Experiments in NaCl were performed at different ionic strength, at I≤1 mol l−1. The species considered in both ionic media were UO2(OH)+, (UO2)2(OH)22+ and (UO2)3(OH)5+, and in addition (UO2)3(OH)42+ and (UO2)3(OH)7 in NaClaq. The dependence on ionic strength of enthalpy changes in NaClaq was expressed by the simple linear equation ΔHpqH°pq+aI1/2 (a, empirical parameter). Comparison with literature findings is given and some recommended values are reported.  相似文献   

6.
Summary A TLC method has been developed for separating Th4+, UO2 2+ and Zr4+ in the presence of some common anions using a dimethylamine/acetone/formic acid mobile phase. Capacity factors, separation factors and resolution for the separation of Th4+ from UO2 2+ have been evaluated. The effect of the pH of the sample on RF values of Th4+, UO2 2+, Ni2+ and Cu2+ has also been examined.  相似文献   

7.
采用优化的高温固相方法制备了稀土离子Eu3+和Tb3+掺杂的La7O6(BO3)(PO42系荧光材料,并对其物相行为、晶体结构、光致发光性能和热稳定性进行了详细研究。结果表明,La7O6(BO3)(PO42:Eu3+材料在紫外光激发下能够发射出红光,发射光谱中最强发射峰位于616 nm处,为5D07F2特征能级跃迁,Eu3+的最优掺杂浓度为0.08,对应的CIE坐标为(0.610 2,0.382 3);La7O6(BO3)(PO42:Tb3+材料在紫外光激发下能够发射出绿光,发射光谱中最强发射峰位于544 nm处,对应Tb3+5D47F5能级跃迁,Tb3+离子的最优掺杂浓度为0.15,对应的CIE坐标为(0.317 7,0.535 2)。此外,对2种材料的变温光谱分析发现Eu3+和Tb3+掺杂的La7O6(BO3)(PO42荧光材料均具有良好的热稳定性。  相似文献   

8.
Two new mixed alkaline uranyl molybdates CsNa3[(UO2)4O4Mo2O8] ( 1 ) and Cs2Na8[(UO2)8O8(Mo5O20)] ( 2 ) have been obtained by high‐temperature solid state reactions. Their crystal structures have been solved by direct methods: Compound 1 : triclinic, P , a = 6.46(1), b = 6.90(1), c = 11.381(2) Å, α = 84.3(1), β = 91.91(1), γ = 80.23(1)°, V = 488.6(2) Å3, R1 = 0.06 for 2865 unique reflections with |Fo| ≥ 4σF; Compound 2 : orthorhombic, Ibam, a = 6.8460(2), b = 23.3855(7), c = 12.3373(3) Å, V = 1975.2(1) Å3, R1 = 0.049 for 2120 unique reflections with |Fo| ≥ 4σF. The structure of 1 contains complex sheets of UrO5 pentagonal bipyramids and molybdenum polyhedra. The sheets have [(UO2)2O2(MoO5)] composition. Natrium and cesium atoms are located in the interlayer space. Cesium atoms are situated between the molybdenum clusters, whereas natrium atoms are segregated between the uranyl complexes. The large Cs+ ions are localized between the Mo2O9 groups and force the molybdenum polyhedra to rotate relative to the [(UO2)2O2(MoO5)] sheets. Such rotation is impossible for U6+ polyhedra due to their rigid edge‐sharing complexes. The distance between the U6+ polyhedra vertices of neighboring layers is 3.8 Å, that allows the Na+ ion to be positioned between the uranyl groups. The crystal structure of 2 is based upon a framework consisting of [(UO2)2O2(MoO5)] sheets parallel to (010). The sheets are linked into a 3‐D framework by sharing vertices with the Mo(2)O4 tetrahedra, located between the sheets. Each MoO4 tetrahedron shares two of its corners with two MoO6 octahedra in the sheet above, and the other two with MoO6 octahedra of the sheet below. Thus four MoO6 octahedra and one MoO4 tetrahedron form chains of composition Mo5O18. The resulting framework has a system of channels occupied by the Cs+ and Na+ ions.  相似文献   

9.
β-UP2O7 has been synthesized under hydrothermal conditions (θ=500°C, P=200 MPa), using UO2 and H3PO4. β-UP2O7 crystallizes in the orthorhombic space group Pn21a, with a=11.526 (2) Å, b=7.048 (2) Å, c=12.807 (2) Å and Z=4. Its structure has been determined through direct methods and difference Fourier synthesis and has been refined to R=0.0396. The structure is built on UO8 polyhedral chains along the b-axis. PO43− and P3O105− groups coexist in the structure and the latter groups form non-linear chains. Cohesion of the structure is made through the linkage of UO8 chains by PO4 and P3O10 groups leading to the formula U2(PO4)(P3O10) instead of β-UP2O7. Vibrational and optical spectra confirm the results obtained by X-ray diffraction. DTA-TGA measurements show that the transformation of U2(PO4)(P3O10) to the cubic α-UP2O7 occurs at θ=870°C.  相似文献   

10.
使用Ge4+、Sn4+作为掺杂离子, 通过高温固相法制备四价阳离子掺杂改性的尖晶石LiMn2O4材料. X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明, Ge4+离子取代尖晶石中Mn4+离子形成了LiMn2-xGexO4 (x=0.02,0.04, 0.06)固溶体; 而Sn4+离子则以SnO2的形式存在于尖晶石LiMn2O4的颗粒表面. Ge4+离子掺入到尖晶石LiMn2O4材料中, 抑制了锂离子在尖晶石中的有序化排列, 提高了尖晶石LiMn2O4的结构稳定性; 而在尖晶石颗粒表面的SnO2可以减少电解液中酸的含量, 抑制酸对LiMn2O4活性材料的侵蚀. 恒电流充放电测试表明, 两种离子改性后材料的容量保持率均有较大幅度的提升, 有利于促进尖晶石型LiMn2O4锂离子电池正极材料的商业化生产.  相似文献   

11.
《Analytical letters》2012,45(15):2811-2825
Abstract

Simple and rapid chemiluminescence (CL) assays for H2O2, ?OH, ?O2 ? and 1O2 using 5-amino-2,3-dihydro-1,4-phthalazinedione (luminol) or 2-methyl-6-phenyl-3,7-dihydroimidazo[1,2-α]pyrazin-3-one (CLA) as CL reagents were developed. The means of the intra-assay relative standard deviations of ten replicate measurements of H2O2 (25-120 μM), ?OH generated from Fe(II) ion (2.5-10 μM) in the presence of 980 μM H2O2, ?O2 ? generated from hypoxanthine (HX) (7-50 μM) in the presence of 9 × 10?3 units xanthine oxidase (XO) and 1O2 generated from NaOCl (3-12 mM) in the presence of 97.6 μM H2O2 were found to be 4.0%, 2.8%, 2.4% and 8.7%, respectively. To validate the proposed methods, the scavenging abilities of three standard antioxidative compounds, such as L-ascorbic acid, (±)-α-tocopherol and superoxide dismutase (SOD) were examined for four active oxygen species and compared with those by anelectron spin resonance (ESR) spin-trapping method. In addition, the CL methods were also applied to establish the relationships between the decrease of CL intensity and the structures as well as redox characters of syringic acid, 3-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid. From the obtained results, the scavenging effects to H2O2, ?OH, ?O2 ? and 1O2 of other dihydroxybenzoic acids were also evaluated.  相似文献   

12.
The objectives of this study were to address uncertainties in the solubility product of (UO2)3(PO4)2⋅4H2O(c) and in the phosphate complexes of U(VI), and more importantly to develop needed thermodynamic data for the Pu(VI)-phosphate system in order to ascertain the extent to which U(VI) and Pu(VI) behave in an analogous fashion. Thus studies were conducted on (UO2)3(PO4)2⋅4H2O(c) and (PuO2)3(PO4)2⋅4H2O(am) solubilities for long-equilibration periods (up to 870 days) in a wide range of pH values (2.5 to 10.5) at fixed phosphate concentrations of 0.001 and 0.01 M, and in a range of phosphate concentrations (0.0001–1.0 M) at fixed pH values of about 3.5. A combination of techniques (XRD, DTA/TG, XAS, and thermodynamic analyses) was used to characterize the reaction products. The U(VI)-phosphate data for the most part agree closely with thermodynamic data presented in Guillaumont et al.,(1) although we cannot verify the existence of several U(VI) hydrolyses and phosphate species and we find the reported value for formation constant of UO2PO4 is in error by more than two orders of magnitude. A comprehensive thermodynamic model for (PuO2)3(PO4)2⋅4H2O(am) solubility in the H+-Na+-OH-Cl-H2PO4-HPO2−4-PO3−4-H2O system, previously unavailable, is presented and the data shows that the U(VI)-phosphate system is an excellent analog for the Pu(VI)-phosphate system.  相似文献   

13.
《Analytical letters》2012,45(8):1635-1644
ABSTRACT

The stepwise formation constants of Ce3+, Th4+ and UO2 2+ complexes with four azo compounds based on I-phenyl-2, 3-dimethylpyrazoline-5-one nucleus namely; 4-phenylazo- (2-hydroxy, 5-x) 1-pheny1-2, 3-dimethy1-pyrazoline-5-one, where x= H (1), OH (II), COOH (III) and NH2 (IV) have been determined potentiometrically at different temperatures and ionic strengths in 30% (v/v) ethanol-water solutions, then the thermodynamic parameters are calculated.

Negatives values of both ∠H and ∠G are obtained indicating the exothermic and spontaneous nature of complexation reactions, whereas positive values of ∠S show that entropy consideration favour complex formation. The study at different ionic strengths shows that an increase in the latter causes a decrese in the pK values. The azo compounds are also tested as new reagents for the spectrophotometric determination of Ce3+, Th4+ and UO2 2+ ions in synthetic and natural solutions by extensive investigation of the optimum conditions favoring the formation of colored complexes.  相似文献   

14.
Synthetic procedures for new N2S4- and N2S5-donor macrocycles (2 and 4) were given. The ligands were prepared by the reaction of NaBH4 with the appropriate macrocyclic diamide in the presence of boron trifluoride ethyl etherate in dry tetrahydrofuran (THF). Solvent extraction method was used to evaluate metal-ion binding properties of the new ligands. The solvent extraction experiments suggested that the reduced macrocycles have Ag+ and Hg2+ selectivities compared to Pb2+, Co2+, Zn2+, Ni2+, Cu2+, Mn2+ and Cd2+ ions. The extraction constants (log K ex) and complex compositions were determined for Ag+ and Hg2+ complex of compound (4).  相似文献   

15.
The catalytic activity of superacidic systems based on SO4/ZrO2 and modified by IV Period metals in isomerization ofn-butane was studied. At low temperatures of the reaction, the introduction of Fe3+, Sc3+, Co2+, or Zn2+ ions (1%) increases the yield of isobutane by 1.5 times due to the activation ofn-butane on the sites created by the promoting ions. The addition of Cr3+, V4+, or Mn2+ (1%) decreases the catalytic activity because of a decrease in the catalyst acidity, most likely, due to the reduction of surface sulfur species. The influence of the nature of the support and surface additives of SiO2, TiO2, and ZrO2 on the activity and selectivity of the catalytic system inn-butane isomerization was studied. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7 pp. 1276–1280, July, 1999  相似文献   

16.
尖晶石型LiMn2O4晶体结构及锂离子筛H+/Li+交换性质研究   总被引:1,自引:0,他引:1  
采用密度泛函理论平面波超软赝势和广义梯度近似法对尖晶石型LiMn2O4及其锂离子筛HMn2O4的晶体结构和性质进行了从头计算。PW91泛函最为有效,Li+被H+取代后HMn2O4晶胞收缩,点阵常数从LiMn2O4的0.823 nm减小至0.799 nm,其XRD峰也相应向高角度方向明显位移。经同种格点原子的XRD分析表明,Mn、O两元素对XRD方式和强度起着决定作用。其中Li呈+1价完全离子化,可被H+彻底交换,H与周围O在等电子密度图中呈现电子云相互连接,只带有0.42个正电荷。价轨道分态密度表明,Mn-O之间强的共价键合主要归因于Mn-d和O-p在费米能级下-7.3~-1.6 eV间的轨道重叠,形成了有利于H+/Li+交换的骨架空穴隧道。阵点和空穴多面体的体积遵守如下顺序:V8a>V48f>V8b、V16c>V16d、V16c>V48f。Li+最易迁移至邻近的16c位置,碱金属离子的交换受到离子半径和作用能大小的限制。  相似文献   

17.
The FT IR and FT Raman spectra of Co(en)3Al3P4O16 · 3H2O (compound I) and [NH4]3[Co(NH3)6]3[Al2(PO4)4]2 · 2H2O (compound II) are recorded and analysed based on the vibrations of Co(en)33+, Co(NH3)63+, NH4+, Al---O---P, PO3, PO2 and H2O. The observed splitting of bands indicate that the site symmetry and correlation field effects are appreciable in both the compounds. In compound I, the overtone of CH2 deformation Fermi resonates with its symmetric stretching vibration. The NH4 ion in compound II is not free to rotate in the crystalline lattice. Hydrogen bonding of different groups is also discussed.  相似文献   

18.
A complementary study of hydroxyl radical formation in the depleted uranium (DU)-hydrogen peroxide (H2O2) system and the effect of biosubstances on the system were examined using the spin-trapping method. Hydroxyl radical was formed in the uranyl ion (UO2 2+), 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), and hydrogen peroxide (H2O2) mixture solution. The pseudo first order rate constants of DMPO-OH formation were estimated to be 0.033 s−1 for UO2 2+-H2O2-DMPO solution and 0.153 s−1 for UO2+-H2O2-DMPO solution. The obtained results indicated that the hydroxyl radical formation in the UO2 2+-H2O2 solution could be described as a stepwise reaction process including the reduction of UO2 2+ to UO2 2+ by H2O2 and the Fenton-type reaction of UO2 + with H2O2. Biosubstances, such as proteins, amino acids and saccharides, decreased the DMPO-OH formation, which was caused by the direct hydroxyl radical scavenging and the suppression of hydroxyl radical formation by coupling with uranyl ion.  相似文献   

19.
Bench scale experiments were conducted to determine the dissolution characteristics of UO2, U3O8, and UO3 in aqueous peroxide-containing carbonate solutions. The experimental parameters investigated included carbonate countercation (NH4 +, Na+, K+, and Rb+) and H2O2 concentration. The carbonate countercation had a dramatic influence on the dissolution behavior of UO2 in 1 M carbonate solutions containing 0.1 M H2O2, with the most rapid dissolution occurring in (NH4)2CO3 solution. The initial dissolution rate (y) of UO2 in 1 M (NH4)2CO3 increased linearly with peroxide concentration (x) ranging from 0.05 to 2 M according to: y = 2.41x + 1.14. The trend in initial dissolution rates for the three U oxides under study was UO3 ≫ U3O8 > UO2.  相似文献   

20.
The activation of adsorbed CO is an important step in CO hydrogenation. The results from TPSR of pre-adsorbed CO with H2 and syngas suggested that the presence of H2 increased the amount of CO adsorption and accelerated CO dissociation. The H2 was adsorbed first, and activated to form H* over metal sites, then reacted with carbonaceous species. The oxygen species for CO2 formation in the presence of hydrogen was mostly OH^*, which reacted with adsorbed CO subsequently via CO^*+OH^* → CO2^*+H^*; however, the direct CO dissociation was not excluded in CO hydrogenation. The dissociation of C-O bond in the presence of H2 proceeded by a concerted mechanism, which assisted the Boudourd reaction of adsorbed CO on the surface via CO^*+2H^* → CH^*+OH^*. The formation of the surface species (CH) from adsorbed CO proceeded as indicated with the participation of surface hydrogen, was favored in the initial step of the Fischer-Tropsch synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号