首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Laser-induced forward transfer (LIFT) is a direct-writing technique that allows printing patterns of diverse materials with a high degree of spatial resolution. In conventional LIFT a small fraction of a solid thin film is vaporized by means of a laser pulse focused on the film through its transparent holder, and the resulting material recondenses on the receptor substrate. It has been recently shown that LIFT can also be used to transfer materials from liquid films. This widened its field of application to biosensors manufacturing, where small amounts of biomolecules-containing solutions have to be deposited with high precision on the sensing elements. However, there is still little knowledge on the physical processes and parameters determining the characteristics of the transfers.In this work, different parameters and their effects upon the transferred material were studied. It was found that the deposited material corresponds to liquid droplets which volume depends linearly on the laser pulse energy, and that a minimum threshold energy has to be overcome for transfer to occur. The liquid film thickness was varied and droplets as small as 10 μm in diameter were obtained. Finally, the effects of the variation of the film to substrate distance were also studied and it was found that there exists a wide range of distances where the morphology of the transferred droplets is independent of this parameter, what provides LIFT with a high degree of flexibility.  相似文献   

2.
Laser-induced forward transfer (LIFT) is a direct-writing technique adequate for the high-resolution printing of a wide range of materials, including biological molecules. In this article, the preparation through LIFT of microarrays of droplets from a solution containing rabbit antibody immunoglobulin G (IgG) is presented. The microarrays were prepared at different laser pulse energy conditions, obtaining microdroplets with a circular and well-defined contour. The transfer process has a double threshold: a minimum energy density required to generate an impulsion on the liquid film, and a minimum pulse energy, which corresponds to the onset for material ejection. In addition, it was demonstrated that the transfer process can be correctly described through a simple model which relates the energy density threshold with the amount of released material. Finally, a fluorescence assay was carried out in which the preservation of the activity of the transferred biomolecules was demonstrated.  相似文献   

3.
Laser-induced forward transfer (LIFT) is a high resolution microprinting technique in which small amounts of material are transferred from a previously prepared donor thin film to a receptor substrate. The application of LIFT to liquid donor films allows depositing complex and fragile materials in solution or suspension without compromising the integrity of the deposited material. However, the main drawback of LIFT is the preparation of the donor material in thin film form, being difficult to obtain reproducible thin films with thickness uniformity and good stability.In this work we present a laser microprinting technique that is able to overcome the drawbacks associated with the preparation of the liquid film, allowing the deposition of well-defined uniform microdroplets with high reproducibility and resolution. The droplet transfer mechanism relies on the highly localized absorption of strongly focused femtosecond laser pulses underneath the free surface of the liquid contained in a reservoir.An analysis of the influence of laser pulse energy on the morphology of the printed droplets is carried out, revealing a clear correlation between the printed droplet dimensions and the laser pulse energy. Such correlation is interpreted in terms of the dynamics of the liquid displaced by a laser-generated cavitation bubble close to the free surface of the liquid. Finally, the feasibility of the technique for the production of miniaturized biosensors is tested.  相似文献   

4.
Laser-induced forward transfer (LIFT) is a direct-writing technique which allows the deposition of tiny amounts of material from a donor thin film onto a receptor substrate. When LIFT is applied to liquid donor films, the laser radiation affects only a localized fraction of the liquid, thereby impelling the unaffected portion towards the receptor substrate. Thus, transfer takes place with no melting or vaporization of the deposited fraction and, in this way, LIFT can be used to successfully print complex materials like inorganic inks and pastes, biomolecules in solution, and even living cells and microorganisms. In addition, and for a wide range of liquid rheologies, the material can be deposited in the form of circular microdroplets; this provides LIFT with a high degree of spatial resolution leading to feature sizes below 10 μm, and making it competitive in front of conventional printing techniques. In this work, a revision of the main achievements of the LIFT of liquids is carried out, correlating the morphological characteristics of the generated features with the results of the study of the transfer process. Special emphasis is put on the characterization of the dynamics of liquid ejection, which has provided valuable information for the understanding of microdroplets deposition. Thus, new time-resolved imaging analyses have shown a material release behavior which contrasts with most of the previously made assumptions, and that allows clarifying some of the questions open during the study of the LIFT technique.  相似文献   

5.
The deposition process of the laser-induced forward transfer of liquids at high laser fluences is analyzed through time-resolved imaging. It has been found that, at these conditions, sessile droplets are deposited due to the contact of a generated cavitation bubble with the receptor substrate, in contrast to the jet contact mechanism observed at low and moderate laser fluences. The bubble contact results in droplets with a larger diameter, a smaller contact angle and a lower uniformity than those of the jet mechanism. Therefore, in order to attain a high degree of resolution this mechanism should be prevented.  相似文献   

6.
The possibility of printing two-dimensional micropatterns of biomolecule solutions is of great interest in many fields of research in biomedicine, from cell-growth and development studies to the investigation of the mechanisms of communication between cells. Although laser-induced forward transfer (LIFT) has been extensively used to print micrometric droplets of biological solutions, the fabrication of complex patterns depends on the feasibility of the technique to print micron-sized lines of aqueous solutions. In this study we investigate such a possibility through the analysis of the influence of droplet spacing of a water and glycerol solution on the morphology of the features printed by LIFT. We prove that it is indeed possible to print long and uniform continuous lines by controlling the overlap between adjacent droplets. We show how, depending on droplet spacing, several printed morphologies are generated, and we offer, in addition, a simple explanation of the observed behavior based on the jetting dynamics characteristic of the LIFT of liquids.  相似文献   

7.
The resolution enhancement of laser-induced forward transfer (LIFT) is investigated through the pre-patterning of Cr on the donor substrate. 85 nm dots are first patterned on a microscope slide, and an 800 nm wavelength and 130 fs pulse laser with a beam waist of ~9 μm is used to transfer the Cr dots to an acceptor substrate. The threshold fluence is found to be ~0.15 the threshold fluence of a similar continuous film, which is thought to be due to the fact that no force is needed to tear away Cr from the film itself, unlike in a continuous film experiment. Since the volume of the material limits the transfer feature sizes instead of the laser parameters, as in a continuous film system, minimum transferable feature diameters are significantly lower compared to the continuous film case. Also, the transferred feature diameters are not dependent on the laser parameters, so the diameters are consistent across a wide range of fluences. The force per unit area generated by the laser at threshold fluence is estimated to be ~3 GPa, which is consistent with previous results in the literature. The simplified model that our pre-patterned Cr LIFT experiment represents would make it an ideal case for benchmarking molecular dynamics simulations of femtosecond laser ablation.  相似文献   

8.
Laser-induced forward transfer (LIFT) is a direct-writing technique which can be used to successfully print various complex and sensitive materials with a high degree of spatial resolution. However, the optimization of its performances requires a deep understanding of the LIFT dynamics. Such understanding should allow correlating the phenomena underlying the liquid transfer process with the morphology of the obtained deposits. To this end, in this work it is presented a study related to two aspects: first, the correlation of the morphological characteristics of the transferred droplets with the variation of the film thickness combined with laser fluence; and second, a correlation of the dependences observed with the dynamics of the transfer process. The work is focused on the understanding of the observed dependences for which the information provided by time-resolved analysis on liquid transfer dynamics has proved to be crucial.  相似文献   

9.
The analysis of the morphology of droplets printed through laser-induced forward transfer (LIFT) of liquid films shows that: (i)?the droplet volume is linearly related with the energy of the laser pulse that originated it, (ii)?the liquid ejection process is activated by an energy density threshold?F 0, and (iii)?the droplet volume can be correlated with a dimensional parameter of the laser beam through an oversimple model that states that the amount of printed liquid equals the liquid contained in the cylindrical portion of an irradiated film whose base corresponds to the cross-sectional area of the beam with energy density higher than?F 0. Although these issues seem to describe correctly the LIFT process, some problematic instances arise from them. Thus, the linear relation between droplet volume and laser pulse energy seems to be inconsistent with the existence of the threshold?F 0. On the other hand, the compatibility between the model and the aforementioned linear relation requires to be explained. Finally, the model is based on the idea that transfer takes place in a way analogous to the LIFT of solid films, but time-resolved imaging studies have demonstrated that liquid ejection follows a dynamics which seems quite unsuited with that idea. In this work previous results are re-analyzed and new experiments are performed in an attempt to clarify these questions. It is then shown that the inconsistencies pointed out are only apparent, and that the validity of the model is limited to irradiation conditions where the beam dimensions are significantly larger than the thickness of the liquid film. Furthermore, an explanation is provided for the dependence of the success and failure of the model on those irradiation conditions in terms of the diverse liquid ejection dynamics taking place.  相似文献   

10.
The one-dimensional approximate equations describing the dynamics of a Newtonian viscous fluid are used to analyze the nonlinear development of capillary waves in a jet. It is shown that the size of satellite droplets resulting from a nonuniform jet breakup decreases with the Reynolds number at a constant wavenumber. The satellite-droplet formation ceases at a certain value of the Reynolds number, which depends on the wavenumber and initial perturbation amplitude.  相似文献   

11.
A monodisperse alcosol containing 0.1 wt. % 15 nm gold particles was subjected to controlled flow through a metal capillary exposed to an electric field at the ambient temperature to generate an electrohydrodynamic jet, which subsequently disintegrated into droplets. A silicon substrate was used to collect the droplets and prepare gold films. By varying the deposition time, we have prepared gold films in the thickness range of ∼500–∼ 2000 nm in a maximum spray time of 450 s. This is a significant achievement considering the initial concentration of gold and the spray time involved. The characteristics of the jet, droplets and films prepared were evaluated using advanced analytical techniques. PACS 81.15.Rs; 81.15.-z; 81.07.-b; 81.20.-n; 68.55.jd  相似文献   

12.
Protein-based biosensors are highly efficient tools for protein detection and identification. The production of these devices requires the manipulation of tiny amounts of protein solutions in conditions preserving their biological properties. In this work, laser induced forward transfer (LIFT) was used for spotting an array of a purified bacterial antigen in order to check the viability of this technique for the production of protein microarrays. A pulsed Nd:YAG laser beam (355 nm wavelength, 10 ns pulse duration) was used to transfer droplets of a solution containing the Treponema pallidum 17 kDa protein antigen on a glass slide. Optical microscopy showed that a regular array of micrometric droplets could be precisely and uniformly spotted onto a solid substrate. Subsequently, it was proved that LIFT deposition of a T. pallidum 17 kDa antigen onto nylon-coated glass slides preserves its antigenic reactivity and diagnostic properties. These results support that LIFT is suitable for the production of protein microarrays and pave the way for future diagnostics applications. PACS 87.14.Ee; 81.15.Fg; 07.07.Df  相似文献   

13.
本文应用溶液注入热等离子体喷徐传热和流动过程的三维数学模型.对溶液喷雾喷入参数对溶液喷雾在热等离子体射流中运动和加热历程的影响进行了研究.结果表明以一定的角度逆向喷入溶液可以强化溶液喷雾的加热蒸发过程,在一定范围内提高溶液初始喷入速度,可以使小粒径的液滴获得较大的动量进入射流高温区获得充分加热.结果还表明,为了得到致密...  相似文献   

14.
We develop a method for time-resolved digital holographic microscopy to obtain time-resolved 3-D deformation measurements of laser-induced forward transfer (LIFT) processes. We demonstrate nanometer axial resolution and nanosecond temporal resolution of our method which is suitable for measuring dynamic morphological changes in LIFT target materials. Such measurements provide insight into the early dynamics of the LIFT process and a means to examine the effect of laser and material parameters on LIFT process dynamics.  相似文献   

15.
Dew nucleation and growth   总被引:1,自引:0,他引:1  
Dew is the condensation of water vapor into liquid droplets on a substrate. It is characterized by an initial heterogeneous nucleation on a substrate and a further growth of droplets. The presence of a substrate that geometrically constrains the growth is the origin of the peculiarities and richness of the phenomenon. A key point is the drop interaction through drop fusion or coalescence, which leads to scaling in the growth and gives universality to the process. As a matter of fact, growth dynamics are only dependent on substrate and drop dimensionality. Coalescence events lead to temporal and spatio-temporal fluctuations in the substrate coverage, drop configuration, etc., which give rise to a very peculiar dynamics. When the substrate is a liquid or a liquid crystal, the drop pattern can exhibit special spatial order, such as crystalline, hexatic phases and fractal contours. Condensation on a solid substrate near its melting point can make the drop jump.The applications of monitoring dew formation are manifold. Examples can be found in medicine (sterilization process), agriculture (green houses) and hydrology (production of drinkable water). To cite this article: D. Beysens, C. R. Physique 7 (2006).  相似文献   

16.
Thin films of a tailor-made photodecomposible aryltriazene polymer were applied in a modified laser-induced forward transfer (LIFT) process as sacrificial release layers. The photopolymer film acts as an intermediate energy-absorbing dynamic release layer (DRL) that decomposes efficiently into small volatile fragments upon UV laser irradiation. A fast-expanding pressure jet is generated which is used to propel an overlying transfer material from the source target onto a receiver. This DRL-assisted laser direct-write process allows the precise deposition of intact material pixels with micrometer resolution and by single laser pulses. Triazene-based photopolymer DRL donor systems were studied to derive optimum conditions for film thickness and laser fluences necessary for a defined transfer process at the emission wavelength of a XeCl excimer laser (308 nm). Photoablation, surface detachment, delamination and transfer behavior of aryltriazene polymer films with a thickness from 25 nm to ∼400 nm were investigated in order to improve the process control parameters for the fabrication of functional thin-film devices of microdeposited heat- and UV-sensitive materials.  相似文献   

17.
Laser-induced forward transfer (LIFT) technique is available for the fabrication of micro-sized thin film. In this paper, the LIFT process of gold film was investigated by the microscopic two-dimensional laser induced fluorescence (2D-LIF). The dynamic behavior of the gold atoms and emissive particles were observed in vacuum and atmospheric air. Characteristic behavior was observed for different species. The atoms flew with the fastest speed of more than 2 km/s. The influence of ablation laser energy, film thickness, and the presence of the the substrate on the dynamics of the species are reported.  相似文献   

18.
Simulation of impact of a hollow droplet on a flat surface   总被引:1,自引:0,他引:1  
Despite many theoretical and experimental works dealing with the impact of dense continuous liquid droplets on a flat surface, the dynamics of the impact of hollow liquid droplets is not well addressed. In an effort to understand dynamics of the hollow droplet impingement, a numerical study for the impact of a hollow droplet on a flat surface is presented. The impingement model considers the transient flow dynamics during impact and spreading of the droplet using the volume of fluid surface tracking method (VOF) coupled with the momentum transport model within a one-domain continuum formulation. The model is used to simulate the hydrodynamic behaviour of the impact of glycerin hollow droplet. It is found that the impact and spreading of the hollow droplet on a flat surface is distinctly different from the conventional dense droplet and has some new hydrodynamic features. A phenomenon of formation of a central counter jet of the liquid is predicted. With the help of simulations the cause of this phenomenon is discussed. Comparison of the predicted length of the central counter jet and the velocity of the counter jet front shows good agreements with the experimental data. The influence of the droplet initial impact velocity and the hollow droplet shell thickness on the impact behaviour is highlighted.  相似文献   

19.
A numerical model was developed to investigate thermal processes that initiate laser-induced forward transfer (LIFT). The model included laser absorption, conduction, melting, and volumetric expansion in a thin film. The model was used to investigate the role of volumetric expansion associated with the melting process and was used to help explain surface deformations observed in previous studies of LIFT. The results of the model indicated that volumetric expansion initiated fluid motion that was directed away from the substrate, and the fluid motion was sufficient to induce surface deformations that remained after solidification. The resulting textured surface was similar to that observed experimentally below the droplet expulsion threshold. The fluid motion away from the substrate may explain the mechanism by which droplet formation occurs.  相似文献   

20.
MAPLE direct write (MAPLE DW) is a new laser-based direct-write technique which combines the basic approach employed in laser-induced forward transfer (LIFT) with the unique advantages of matrix-assisted pulsed-laser evaporation (MAPLE). MAPLE DW utilizes an optically transparent substrate coated on one side with a matrix consisting of the material to be transferred mixed with a polymer or organic binder. As in LIFT, the laser is focused through the transparent substrate onto the matrix. When a laser pulse strikes the matrix, the binder decomposes and aids the transfer of the material of interest to an acceptor substrate placed parallel to the matrix surface. MAPLE DW is a maskless deposition process which operates in air and at room temperature. Powders of Ag, BaTiO3, SrTiO3, and Y3Fe5O12 with average diameters of 1 7m were transferred onto the surfaces of alumina, glass, silicon, and printed circuit board substrates. Parallel-plate and interdigitated capacitors and flat inductors were produced by MAPLE DW over Rogers RO4003 substrates. MAPLE DW was also used to transfer polymer composites for the fabrication of gas sensor chemoresistors. One such composite chemoresistor fabricated with polyepichlorohydrin/graphite was used to detect organic vapors with a sensitivity of parts per million.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号