首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
合成气催化转化直接制备低碳烯烃研究进展   总被引:1,自引:0,他引:1  
合成气直接催化转化制备低碳烯烃是C1化学与化工领域中一个极具挑战性的研究课题,具有流程短、能耗低等优势,已成为非石油路径生产烯烃的新途径。直接转化方式主要包括经由OX-ZEO双功能催化剂直接制低碳烯烃的双功能催化路线以及经由费托反应直接制备低碳烯烃的FTO路线。综述简述了近年来在合成气直接制备低碳烯烃方面的研究进展,重点讨论了低碳烯烃的形成机理、新型催化剂的研发及助剂对其催化性能的影响,并对合成气直接制烯烃的未来进行了展望。  相似文献   

2.
随着石油资源的日益枯竭,寻找非石油路线生产低碳烯烃的新途径显得十分重要.将天然气、煤以及生物质等经合成气(H2和CO)转化为低碳烯烃是一条具有前景的路线.近年来,双功能氧化物-分子筛(OX-ZEO)催化剂催化合成气直接制备低碳烯烃引起了国内外的广泛关注.由于CO活化并生成中间物种与C-C偶联分别在氧化物和分子筛上发生, OX-ZEO过程突破了费托合成中ASF产物分布的限制,低碳烯烃选择性显著提高.虽然实验方面已经取得了大量进展,但是OX-ZEO过程仍然存在一些关键问题,特别是金属氧化物中氧空位的作用,以及关键中间体是乙烯酮或甲醇的反应机理仍然不清楚.因此,本文通过密度泛函理论(DFT)计算来解决上述两个问题,对典型的可还原金属氧化物CeO2表面上的合成气直接转化进行了理论研究.计算结果表明, CeO2(110)表面上的氧空位通过形成受阻路易斯酸碱对(FLP),在活化H2和CO中起着关键作用.H2在FLPs上经过异裂分解,形成与O原子结合的质子以及与Ce原子结合的氢负离子,其反应...  相似文献   

3.
多相催化中ZnO基催化剂广泛应用于甲醇合成、水汽变换和合成气转化等诸多领域.近期发展的ZnCrOx-分子筛双功能催化剂(OX-ZEO)打破了传统合成气转化的ASF分布,能够高选择性地实现CO加氢转化为低碳烯烃.其中CO在ZnCrOx表面活化被认为是OX-ZEO催化的关键基元过程,但是ZnCrOx表面的活性位组成和结构目...  相似文献   

4.
以合成气作为平台化合物一步法制备低碳烯烃和液体燃料是有效利用碳资源的重要路径,具备流程短、能耗低的特点,有着良好的工业应用前景。合成气一步法直接转化制备低碳烯烃和液体燃料包括两条工艺路线:费托合成路线和双功能催化路线。本综述简述了两种路线的反应机理,重点阐述了费托合成路线中采用添加助剂和惰性载体对铁基和钴基催化剂的优化设计,费托金属粒径、反应条件、催化剂界面结构对催化剂性能和反应过程的影响。详细解析了双功能催化路线中,一氧化碳活化组分和酸性分子筛的选择、金属氧化物粒径与元素比例、分子筛酸度与孔径大小以及一氧化碳活化组分和酸性分子筛的耦合方式对于催化剂性能的影响。总结了两条路线所具备的优势和面临的挑战,并对未来高效催化剂的发展方向进行了展望。  相似文献   

5.
我们采用浸渍法制备了γ-Al2O3负载的Cu-Fe基催化剂,并结合其反应性能和XRD、H2-TPR和XPS等表征结果研究了其催化合成气直接制低碳烯烃的反应行为.结果表明,合成气直接制低碳烯烃Cu-Fe基催化剂的活性组分Cu和Fe之间存在明显的协同效应,Cu-Fe基催化剂表现出优异的合成气直接制低碳烯烃反应性能;Cu基催化剂中引入少量Fe组分明显提高了活性组分Cu的分散度,促进了Cu活性组分的还原,进而有利于催化剂反应性能的改进.初步推断Cu-Fe基催化剂上合成气转化生成低碳烯烃的主要反应历程为CO加氢生成含氧化合物(醇醚等)后再脱水生成低碳烯烃.  相似文献   

6.
合成气催化转化是生物质或煤炭资源化清洁利用的重要路径,由此可获得烯烃和芳烃等多种高附加值碳氢化合物。分子筛由于具有独特的亚纳米孔道、可控活性位及分子择形性等优点,常被作为载体或直接作为活性组分用于催化合成气转化中C-C的形成和断裂等关键步骤。本综述总结了以分子筛负载金属、氧化物-分子筛(OX-ZEO)双功能以及核壳结构催化剂等直接催化转化合成气制备碳氢化合物的研究进展。重点介绍分子筛结构和酸性对反应路径和机理以及产物分布的影响,并展望分子筛催化合成气转化的未来发展方向。  相似文献   

7.
低碳烯烃(乙烯、丙烯、丁烯)是十分重要的有机化工原料,在传统工业中,主要通过石脑油,石油气和凝析油裂解得到.由于石油资源的日益减少和C1化学的迅速发展,为缓解对石油资源的依赖,急需寻找一种烯烃制备的工艺过程替代石油路线.主流的非石油路线主要是指利用煤炭、天然气、生物质等含碳资源通过合成气直接或间接制备烯烃.间接过程是由合成气转化制得甲醇,然后通过甲醇转化路线(包括甲醇制烯烃的MTO工艺和甲醇制丙烯的MTP工艺)生产烯烃产品.无疑,如能减少反应步骤,将合成气直接高选择性合成低碳烯烃,将体现出流程更短能耗更低的优势,有较强的竞争力.国内外的研究学者一直致力于制备含两种组元的双功能催化剂,试图将甲醇合成及脱水制备烯烃两步耦合在一起,合并为一步法,从而简化工业过程.由于低温下MTO反应几乎无活性,目前该类双功能复合催化剂多采用较高的反应温度.鉴于传统的Cu-Zn-Al催化剂在高温下极低的甲醇选择性,而Zn与其它过渡金属复合氧化物(如ZnZr及ZnCr)可在高温下高选择性合成甲醇,故经常被考虑作为耦合催化剂进行研究.基于上述理念,大化所包信和等提出了全新的OX-ZEO过程,OX(复合氧化物)用来活化CO分子并形成相应中间体,这些中间体可以在ZEO(分子筛)的酸性位上形成相应的烯烃.他们报道的ZnCrO_x/MSAPO催化剂,在较高的CO转化率(17%)下,低碳烯烃选择性高达80%.与此同时,厦门大学王野等采用ZnZr二元氧化物与SAPO-34分子筛物理混合的双功能催化剂,也可实现很高的低碳烯烃选择性(74%).合成气经费托路线直接制烯烃(FTO)反应与费托(FT)反应类似,传统FT催化剂均可用于FTO的改性研究.由于Fe基催化剂的加氢能力相对较弱,产物中烯/烷比较高,所以被广泛用于FTO反应的研究中.de Jong研究小组采用惰性载体负载的Fe基催化剂,并浸渍Na,S元素作为助剂进行FTO反应的研究,实现了61%的低碳烯烃的选择性,但由于反应温度较高(300–350℃),催化剂容易失活,稳定性不佳.此外,由于产物受到ASF分布的限制,甲烷选择性很高.目前FTO研究的挑战在于开发全新的催化活性位结构新方法,摆脱ASF分布的限制,在较温和的反应条件下同时呈现低甲烷选择性及高烯烃选择性.一般认为,金属Co纳米颗粒是Co基费托催化剂的活性相,主要产物为C_(5+)长链饱和烷烃,而Co_2C则被视为Co基FT催化剂失活的主要原因之一,即在合成气转化过程中Co_2C活性很低且CH_4选择性很高.但是,最近中国科学院上海高等研究院低碳转化科学与工程重点实验室的钟良枢及孙予罕领导的研究小组发现,暴露(020)及(101)晶面的Co_2C纳米棱柱结构对合成气转化具有异乎寻常的催化性能.该催化剂在温和的反应条件(250℃和0.1–0.5 MPa)下可实现合成气高选择性直接制备烯烃,甲烷选择性可低至5%,低碳烯烃选择性能够达到60%,而总烯烃选择性高达80%以上(以上所谈到的选择性都是去除了CO_2产物),同时烯/烷比大于30,产物分布完全不服从经典的ASF规律,并且该催化剂具有良好的稳定性,反应600 h仍未出现明显失活.他们通过深入的构效关系研究并结合DFT理论计算,揭示了Co_2C存在显著的晶面效应,相比于其它暴露面,(101)晶面非常有利于烯烃的生成,同时(101)和(020)晶面可有效抑制甲烷的形成.  相似文献   

8.
低碳烯烃(乙烯、丙烯、丁烯)是十分重要的有机化工原料,在传统工业中,主要通过石脑油,石油气和凝析油裂解得到.由于石油资源的日益减少和C1化学的迅速发展,为缓解对石油资源的依赖,急需寻找一种烯烃制备的工艺过程替代石油路线.主流的非石油路线主要是指利用煤炭、天然气、生物质等含碳资源通过合成气直接或间接制备烯烃.间接过程是由合成气转化制得甲醇,然后通过甲醇转化路线(包括甲醇制烯烃的MTO工艺和甲醇制丙烯的MTP工艺)生产烯烃产品.无疑,如能减少反应步骤,将合成气直接高选择性合成低碳烯烃,将体现出流程更短能耗更低的优势,有较强的竞争力.国内外的研究学者一直致力于制备含两种组元的双功能催化剂,试图将甲醇合成及脱水制备烯烃两步耦合在一起,合并为一步法,从而简化工业过程.由于低温下MTO反应几乎无活性,目前该类双功能复合催化剂多采用较高的反应温度.鉴于传统的Cu-Zn-Al催化剂在高温下极低的甲醇选择性,而Zn与其它过渡金属复合氧化物(如ZnZr及ZnCr)可在高温下高选择性合成甲醇,故经常被考虑作为耦合催化剂进行研究.基于上述理念,大化所包信和等提出了全新的OX-ZEO过程,OX(复合氧化物)用来活化CO分子并形成相应中间体,这些中间体可以在ZEO(分子筛)的酸性位上形成相应的烯烃.他们报道的ZnCrOx/MSAPO催化剂,在较高的CO转化率(17%)下,低碳烯烃选择性高达80%.与此同时,厦门大学王野等采用ZnZr二元氧化物与SAPO-34分子筛物理混合的双功能催化剂,也可实现很高的低碳烯烃选择性(74%).合成气经费托路线直接制烯烃(FTO)反应与费托(FT)反应类似,传统FT催化剂均可用于FTO的改性研究.由于Fe基催化剂的加氢能力相对较弱,产物中烯/烷比较高,所以被广泛用于FTO反应的研究中.de Jong研究小组采用惰性载体负载的Fe基催化剂,并浸渍Na,S元素作为助剂进行FTO反应的研究,实现了61%的低碳烯烃的选择性,但由于反应温度较高(300–350℃),催化剂容易失活,稳定性不佳.此外,由于产物受到ASF分布的限制,甲烷选择性很高.目前FTO研究的挑战在于开发全新的催化活性位结构新方法,摆脱ASF分布的限制,在较温和的反应条件下同时呈现低甲烷选择性及高烯烃选择性.一般认为,金属Co纳米颗粒是Co基费托催化剂的活性相,主要产物为C5+长链饱和烷烃,而Co2C则被视为Co基FT催化剂失活的主要原因之一,即在合成气转化过程中Co2C活性很低且CH4选择性很高.但是,最近中国科学院上海高等研究院低碳转化科学与工程重点实验室的钟良枢及孙予罕领导的研究小组发现,暴露(020)及(101)晶面的Co2C纳米棱柱结构对合成气转化具有异乎寻常的催化性能.该催化剂在温和的反应条件(250℃和0.1–0.5 MPa)下可实现合成气高选择性直接制备烯烃,甲烷选择性可低至5%,低碳烯烃选择性能够达到60%,而总烯烃选择性高达80%以上(以上所谈到的选择性都是去除了CO2产物),同时烯/烷比大于30,产物分布完全不服从经典的ASF规律,并且该催化剂具有良好的稳定性,反应600 h仍未出现明显失活.他们通过深入的构效关系研究并结合DFT理论计算,揭示了Co2C存在显著的晶面效应,相比于其它暴露面,(101)晶面非常有利于烯烃的生成,同时(101)和(020)晶面可有效抑制甲烷的形成.  相似文献   

9.
芳烃作为重要的工业基础化学品,可通过合成气直接或间接法转化制备。与间接转化法相比较,合成气直接制芳烃路线(STA)具有原料转化率高、流程短、产品易分离等优点。本研究主要综述了合成气经费托路线直接制芳烃的研究进展,重点分析了金属氧化物耦合分子筛双功能催化剂中费托活性组分与助剂的选择、分子筛酸性调变、孔道结构调控等对催化反应性能的影响;归纳了反应温度、压力、空速、氢碳比等反应参数对反应性能的影响规律,并基于STA反应机理和失活机理等方面概述探讨如何提高活性和稳定性;总结归纳了合成气经费托路线制芳烃面临的主要问题以及今后研究的方向。  相似文献   

10.
CO加氢制备低碳烯烃是非石油路线获得烯烃的重要反应,其反应路线有直接法和间接法.直接法制备低碳烯烃具有反应路线短、能源利用率高、经济高效等优势.综述了近年来Fe基催化剂、 Co基催化剂在CO直接制备低碳烯烃中的研究进展.分析认为:费托合成过程产物选择性遵循Anderson-Schulz-Flory(ASF)分布规律,助剂和载体的使用一定程度提高Fe基、 Co基催化剂的低碳烯烃选择性.  相似文献   

11.
利用可再生氢气实施CO_2直接加氢生成低碳烯烃或芳烃等基础化学品可同时实现碳减排和CO_2的资源化利用.然而,由于CO_2的C=O键难以活化且生成多碳产物的C-C偶联难以控制,导致CO_2加氢易生成C_1产物,选择性转化为多碳化学品较困难. 2016年,我国科学家报道了利用复合氧化物与分子筛耦合的双功能催化剂接力催化合成气制备低碳烯烃和芳烃的新路径.受此启发,近期接力催化CO_2为低碳烯烃和芳烃的研究报道不断涌现.本文概述了近年有关应用双功能催化剂催化CO_2加氢制高值化学品的研究进展,阐述了如何串联两个"性格"迥异的反应,并讨论了双功能催化剂上影响催化性能的关键因素.  相似文献   

12.
李印文  张欣  卫敏 《催化学报》2018,39(8):1329-1346
C1化学通常是指所有参与反应的分子都只含有一个碳原子, 是煤化学和天然气化学的核心, 其中合成气(CO + H2)转化是其中最重要的工业反应体系. 如今部分国家和地区, 由于能源结构调整和煤炭资源利用, 急需开发更清洁、更高效的绿色能源. 合成气转化作为煤炭间接液化技术中最重要的一个环节, 根据目标产物的不同已经发展了三个主要的反应体系: 传统的费托合成制备汽油、柴油和蜡等饱和碳氢化合物, 类费托合成制备以低碳烯烃、芳香化合物为主的不饱和碳氢化合物, 以及一步转化为高碳醇的含氧化合物.铁/钴作为两种主要的工业催化剂, 引起了研究者的广泛关注. 不同的产物对于催化体系的要求不同, 即使催化剂的组 成相同, 仍需对催化剂的结构进行大范围的调变和修饰. 而催化剂结构的改变可以通过载体的选择、助剂的修饰和活化条件的调控来改变催化剂中活性相的尺寸和分散度、活性位点的电子密度甚至获得新的活性物种. 通过对催化剂进行改性,我们可以有效的促进反应物的活化、削弱产物的吸附并最终获得目标产物. 与此同时, 反应条件的优化(温度和压力)、反应介质的转变和不同反应的耦合同样可以极大改变催化性能. 由此可见, 无论是直接对催化剂结构进行修饰还是间接的改变反应条件都可以有效的提升催化性能.高效催化剂的设计主要基于结构调控和新反应体系的建立, 本文系统地综述了铁/钴催化剂在合成气转化方面的三个重要反应和最新研究进展. 第一部分概述了费-托合成反应中关于铁活性物种的辨别与确认、对制备汽油和柴油的性能优化, 着重介绍了原位技术在该反应中的应用及对催化体系中构效关系的揭示. 第二部分讨论了制备烯烃和芳香化合物等不饱和碳氢化合物的催化剂结构设计, 总结了产物选择性(尤其是C2-C4烯烃选择性)的调控方法. 第三部分综述了近期报导的合成气直接转化为高碳醇的催化剂的研究进展, 包括制备方法、载体和助剂对于提升总醇和高碳醇选择性的影响. 最后, 本文探讨了该领域尚未解决的问题, 主要包括制备烯烃和高碳醇的性能仍距实际工业生产的指标相去甚远、在苛刻的反应条件下活性位点极难保持稳定的结构、以及反应体系的复杂性对于深入理解反应机理所造成的阻碍, 并从新型催化剂的制备、金属载体相互作用的调控、原位实验的探究等方面提出了可行的解决方案.  相似文献   

13.
C1化学通常是指所有参与反应的分子都只含有一个碳原子,是煤化学和天然气化学的核心,其中合成气(CO+H_2)转化是其中最重要的工业反应体系.如今部分国家和地区,由于能源结构调整和煤炭资源利用,急需开发更清洁、更高效的绿色能源.合成气转化作为煤炭间接液化技术中最重要的一个环节,根据目标产物的不同已经发展了三个主要的反应体系:传统的费托合成制备汽油、柴油和蜡等饱和碳氢化合物,类费托合成制备以低碳烯烃、芳香化合物为主的不饱和碳氢化合物,以及一步转化为高碳醇的含氧化合物.铁/钴作为两种主要的工业催化剂,引起了研究者的广泛关注.不同的产物对于催化体系的要求不同,即使催化剂的组成相同,仍需对催化剂的结构进行大范围的调变和修饰.而催化剂结构的改变可以通过载体的选择、助剂的修饰和活化条件的调控来改变催化剂中活性相的尺寸和分散度、活性位点的电子密度甚至获得新的活性物种.通过对催化剂进行改性,我们可以有效的促进反应物的活化、削弱产物的吸附并最终获得目标产物.与此同时,反应条件的优化(温度和压力)、反应介质的转变和不同反应的耦合同样可以极大改变催化性能.由此可见,无论是直接对催化剂结构进行修饰还是间接的改变反应条件都可以有效的提升催化性能.高效催化剂的设计主要基于结构调控和新反应体系的建立,本文系统地综述了铁/钴催化剂在合成气转化方面的三个重要反应和最新研究进展.第一部分概述了费-托合成反应中关于铁活性物种的辨别与确认、对制备汽油和柴油的性能优化,着重介绍了原位技术在该反应中的应用及对催化体系中构效关系的揭示.第二部分讨论了制备烯烃和芳香化合物等不饱和碳氢化合物的催化剂结构设计,总结了产物选择性(尤其是C2–C4烯烃选择性)的调控方法.第三部分综述了近期报导的合成气直接转化为高碳醇的催化剂的研究进展,包括制备方法、载体和助剂对于提升总醇和高碳醇选择性的影响.最后,本文探讨了该领域尚未解决的问题,主要包括制备烯烃和高碳醇的性能仍距实际工业生产的指标相去甚远、在苛刻的反应条件下活性位点极难保持稳定的结构、以及反应体系的复杂性对于深入理解反应机理所造成的阻碍,并从新型催化剂的制备、金属载体相互作用的调控、原位实验的探究等方面提出了可行的解决方案  相似文献   

14.
甲醇制烯烃(MTO)作为一条由煤、天然气及生物质等含碳资源制备重要化学品的非石油路线,近年来备受人们关注。分子筛作为MTO的催化剂,其催化性能和MTO反应行为与其骨架结构和酸性特征密切相关,而认识这些关系对研发新型高效MTO催化剂和改进反应工艺具有重要意义。为此,研究简述了近年来有关甲醇转化制烯烃过程中分子筛催化活性及反应机理的理论和实验研究进展。重点讨论了不同分子筛在MTO过程中烃池物种、反应路线以及催化动力学方面的差异,分析了分子筛催化剂的骨架结构及酸性对其MTO催化性能的影响。  相似文献   

15.
碱土金属氧化物担载Fe-MnO催化剂可大幅度提高低碳烯烃的选择性和CO转化率,添加碱金属助剂将进一步改善其催化性能;MnO是铁催化剂由合成气制烯烃的有效助剂;碱土金属氧化物担体能抑制乙烯发生歧化反应及丙烯加氢反应,而MnO助剂主要抑制乙烯加氢反应,从而有利于提高合成气制低碳烯烃的选择性。  相似文献   

16.
王传明  王仰东  谢在库 《催化学报》2018,39(7):1272-1279
低碳烯烃(乙烯、丙烯等)是重要的基本有机原料, 一般通过蒸汽裂解或催化裂解生成得到.基于中国的资源结构特点, 发展非石油资源路线合成低碳烯烃具有重要的战略意义. 其中从煤、天然气等资源出发, 通过甲醇合成低碳烯烃就提供了这样一条可替代的路线. 因此分子筛催化甲醇制烯烃(MTO)反应在过去几十年获得了广泛的关注和研究. 为了获得高的产物选择性, 一般要求MTO分子筛催化材料具有较小的孔道结构以及合适的笼结构, H-SAPO-34和H-SAPO-18分子筛就具有这样的空间结构特点. 但是MTO催化反应产物分布多样复杂, 因此需要深入认识MTO催化反应机理, 从而优化设计分子筛结构和反应条件.目前已经形成的共识认为, MTO催化反应沿着烃池反应机理进行, 但是烃池活性中心的结构还存在很多争议. 我们曾系统研究了H-SAPO-18分子筛中多甲基苯的分布, 以及催化MTO反应的芳烃循环路线, 指出多甲基苯路线的总吉布斯自由能垒高于200 kJ/mol (673 K). 本文以四甲基乙烯(TME)作为代表性的烯烃烃池活性中心, 系统研究了H-SAPO-18分子筛催化MTO反应的烯烃循环路线. TME循环路线的总吉布斯自由能垒不大于150 kJ/mol, 远小于芳烃循环的总能垒. 因此, 烯烃本身有很大可能是H-SAPO-18催化MTO反应的烃池活性中心. 我们也指出了芳烃循环和烯烃循环路线的相似性, 这包括基元反应的相似性和中间体结构的相似性. 或者可以说, 芳烃循环和烯烃循环路线机理上没有区别, 关键是为了得到具有烷基(侧)链的裂解前驱体, 最后通过裂解生成低碳烯烃. 在烯烃循环路线中, 产物选择性与裂解前驱体(高碳烯烃、碳正离子等)的分布以及裂解动力学有关. 计算发现生成乙烯和丙烯的裂解基元反应能垒与裂解前驱体的碳数之间存在线性关系. 本文进一步强调了分子筛催化MTO反应中烯烃活性中心的重要性, 并且清楚指出了烯烃循环和芳烃循环的机理相似性.  相似文献   

17.
在合成气一步法制备低碳烯烃(FTO)反应中铁基催化剂因成本低、易得、操作温度范围宽等诸多优点而备受关注。载体具有自身特定的结构性质、表面酸碱性、电子特性、缺陷位、孔道限域效应和表面物化可调节性,这些性质对FTO反应性能均有显著影响。双功能催化剂也是FTO反应突破Anderson-Schulz-Flory(ASF)分布的有效手段,但Fe基双功能催化剂设计时需要考虑反应原理。本文对近10年关于Fe基FTO反应催化剂的载体研究发展进行了综述,力求寻求这些研究中的规律性知识,以期对未来FTO反应铁基催化剂的制备和研究提供帮助。  相似文献   

18.
CO加氢制备低碳烯烃是非石油路线获得烯烃的重要反应,其反应路线有直接法和间接法。直接法制备低碳烯烃具有反应路线短、能源利用率高、经济高效等优势。综述了近年来Fe基催化剂、Co基催化剂在CO直接制备低碳烯烃中的研究进展。分析认为:费托合成过程产物选择性遵循Anderson-Schulz-Flory(ASF)分布规律,助剂和载体的使用一定程度提高Fe基、Co基催化剂的低碳烯烃选择性。  相似文献   

19.
低碳烯烃(乙烯、丙烯等)是重要的基本有机原料,一般通过蒸汽裂解或催化裂解生成得到。基于中国的资源结构特点,发展非石油资源路线合成低碳烯烃具有重要的战略意义.其中从煤、天然气等资源出发,通过甲醇合成低碳烯烃就提供了这样一条可替代的路线.因此分子筛催化甲醇制烯烃(MTO)反应在过去几十年获得了广泛的关注和研究.为了获得高的产物选择性,一般要求MTO分子筛催化材料具有较小的孔道结构以及合适的笼结构,H-SAPO-34和H-SAPO-18分子筛就具有这样的空间结构特点.但是MTO催化反应产物分布多样复杂,因此需要深入认识MTO催化反应机理,从而优化设计分子筛结构和反应条件.目前已经形成的共识认为,MTO催化反应沿着烃池反应机理进行,但是烃池活性中心的结构还存在很多争议.我们曾系统研究了H-SAPO-18分子筛中多甲基苯的分布,以及催化MTO反应的芳烃循环路线,指出多甲基苯路线的总吉布斯自由能垒高于200 k J/mol(673 K).本文以四甲基乙烯(TME)作为代表性的烯烃烃池活性中心,系统研究了H-SAPO-18分子筛催化MTO反应的烯烃循环路线.TME循环路线的总吉布斯自由能垒不大于150 k J/mol,远小于芳烃循环的总能垒.因此,烯烃本身有很大可能是H-SAPO-18催化MTO反应的烃池活性中心.我们也指出了芳烃循环和烯烃循环路线的相似性,这包括基元反应的相似性和中间体结构的相似性.或者可以说,芳烃循环和烯烃循环路线机理上没有区别,关键是为了得到具有烷基(侧)链的裂解前驱体,最后通过裂解生成低碳烯烃.在烯烃循环路线中,产物选择性与裂解前驱体(高碳烯烃、碳正离子等)的分布以及裂解动力学有关.计算发现生成乙烯和丙烯的裂解基元反应能垒与裂解前驱体的碳数之间存在线性关系.本文进一步强调了分子筛催化MTO反应中烯烃活性中心的重要性,并且清楚指出了烯烃循环和芳烃循环的机理相似性.  相似文献   

20.
基于非石油路线制备的乙炔小分子,其羰基化反应可制备大量高附值化学品,在CO排放的环境治理以及化学品应用方面有着十分重要的意义.本文主要概述了乙炔羰基化反应的催化剂由均相到多相的研究进展,总结了乙炔单/双羰基化催化剂种类及添加剂对反应活性的影响.基于反应机理分析提出调控结构敏感性因素(尺寸效应及形貌效应)制备高效催化剂的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号