首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
细菌是一种与人类生命活动息息相关的微生物,其快速、高灵敏检测对重大传染性疾病的防控至关重要.本文介绍了拉曼光谱用于细菌检测的基本原理,综述了3种拉曼光谱用于细菌检测的主要方式,包括细菌组成成分检测、细菌代谢物检测以及基于拉曼探针标记的检测模式,并对各种拉曼检测方法进行了分析比较.最后,展望了拉曼光谱在细菌检测领域的发展前景,并提出了5条建议.  相似文献   

2.
细菌耐药性问题引发全球关注。表面增强拉曼光谱技术(SERS)凭借灵敏度高、检测速度快等优势在评价细菌耐药性应用方面备受关注。本文首先总结了与细菌耐药性评价相关的SERS基底及检测方法,然后对SERS光谱技术在耐药菌和敏感菌鉴定、细菌生物膜成膜性分析与评价及抗菌药物敏感性筛查方面的应用进行总结,最后对SERS技术在细菌检测方面的一些瓶颈问题展开了讨论。希望本文能为SERS技术在细菌耐药性评价方面的应用提供方法指导和思路借鉴。  相似文献   

3.
分析化学一直在不断地为提高分析灵敏度而建立各种新的方法,如原子吸收光谱、电感耦合等离子体光谱等。这些方法都为提高分析灵敏度作出了一定的贡献。可调谐激光应用到分析化学上之后,分析灵敏度的提高有了一个重大突破,即达到了分析化学方法的最高灵敏度——检测一个原子。目前达到单原子检测的方法已有两种,一种是Hurst等提出的共  相似文献   

4.
提出了一种快速分析厌氧细菌代谢物中5种有机酸的高效液相色谱方法。该方法采用乙腈-0.02mol/L磷酸二氢钾缓冲溶液(pH 2.8)作为流动相,流速和流动相中两种组分的比例均采用四元泵程序梯度洗脱方法控制,检测波长为215 nm,柱温30℃时,能够快速、准确地分离和测定细菌培养基中的甲酸、乙酸、乳酸、琥珀酸和丙酸等5种有机酸,总分析时间只需4 m in。方法的相对标准偏差为0.26%~1.26%,回收率95.0%~100.8%,各种有机酸的线性相关系数r≥0.99981,具有较高的精密度和准确度,可以用于细菌代谢物中有机酸的分析。  相似文献   

5.
水产品中硝基呋喃代谢物残留快速检测新方法的研究   总被引:7,自引:1,他引:6  
采用超高效液相色谱-串联质谱检测系统(UPLC-MS/MS)研究了2种衍生剂、2种衍生时间对水产品中4种硝基呋喃代谢物3-氨基-2-唑烷基酮(AOZ)、5-甲基吗啉-3-氨基-2-唑烷基酮(AMOZ)、氨基脲(SEM)、1-氨基-乙丙酰脲(AHD)的衍生化反应机理、衍生产物的检测灵敏度及其稳定性.质谱扫描结果表明,衍生剂2-氯苯甲醛和2-硝基苯甲醛对4种硝基呋喃代谢物的衍生化反应遵循相同的亲核加成反应机理;方差分析结果表明,同一衍生剂和同一代谢物,快速衍生化2 h和连续衍生化16 h获得的衍生产物的检测灵敏度没有显著差别;所有快速衍生物检测灵敏度连续4 d保持相对稳定.初步研究了快速水解对阳性样品的有效性.  相似文献   

6.
近年来,污水流行病学(wastewater-based epidemiology, WBE)已被证明是用来监测社区毒品滥用和公共健康的一种有效评估方法,该方法通过定量分析指定社区污水回收站中污水的药物残留或者代谢物来反推社区中人们对毒品的消耗量并结合指定社区的人口数量对其进行归一化处理. 电化学生物传感器具有响应时间快、成本低、分析样品需求量小、数据分辨率高以及能够现场快速测试等特点,已被广泛应用于疾病快速诊断、环境污染监测、食品安全以及毒品检测等领域. 液相色谱-质谱联用是分析污水中的毒品及其代谢物的主要方法,但随着传感技术尤其是电化学传感器近来的快速发展,也开始被用于研究污水传染病学并可实现现场快速测量. 本文综述了电化学生物传感器在污水中无机污染物(如重金属)、有机污染物(如农药、毒品)、生物分子(如 DNA)以及细菌等微生物分析中的最新进展,同时还论述了目前电化学传感器技术在污水流行病学领域的应用和未来所面临的主要挑战.  相似文献   

7.
采用高检测灵敏度超高效液相色谱串联质谱开发了烤鳗虾中硝基呋喃代谢物残留量快速检测新技术.该技术包括2-氯苯甲醛为衍生剂,试剂盒方法快速样品制备,高检测灵敏度超高效液相色谱串联质谱快速测定.设计了4个添加水平(0.2、0.5、1.0、2.0 μg/kg)、8次重复的试验.结果表明,方法线性范围0~5.0 μg/kg;检测限均为0.2μg/kg;AOZ回收率89.2%~100.6%,RSD2.2%~12.6%;AMOZ回收率91.3%~107.4%,RSD 4.3%~8.7%;SEM回收率79.9%~118.0%,RSD 2.4%~12.3%和A皿回收率78.9%~105.0%,RSD3.7%~12.1%.该快速检测方法小批量(20个样品)检测周期少于5.5h.  相似文献   

8.
改性碳纳米管气体传感器   总被引:3,自引:0,他引:3  
文晓艳 《化学进展》2008,20(2):260-264
碳纳米管气体传感器具有灵敏度高、响应速度快、尺寸小和能在室温下工作等诸多优点,是一种很有前景的气体传感器.然而本征碳纳米管气体传感器只对少数几种气体如NH3、O2、NO2和SO2敏感,检测范围有限;而且这类传感器的检测灵敏度和选择性也有待提高.研究表明对碳纳米管进行改性可以克服这些缺陷.目前已有的改性方法主要包括对碳纳米管表面有机修饰、对碳纳米管掺入无机杂原子以及径向力学变形等.本文对改性碳纳米管气体传感器研究的最新进展进行了综述,分析了上述改性方法在扩大碳纳米管气体传感器的检测范围、提高检测灵敏度和选择性方面的优势和不足,并对其研究前景进行了展望.  相似文献   

9.
采用快速高分辨液相色谱(RRLC)分离系统与QTRAP型及QTOF型MS/MS仪联用技术,通过考察尿液样本前处理方法,优化液相色谱条件和质谱检测参数,建立了用于尿液中代谢物分析的RRLC-MS方法.采用本方法对尿液浓度下的20种代表性代谢物进行了检测,考察了方法的灵敏度和精密度,证明本方法适用于尿液代谢组学的研究.对穿...  相似文献   

10.
Liu S  Wang H 《色谱》2011,29(9):816-829
毛细管电泳以其分析速度快、分离效率高、操作简便、能够实现高通量而获得了广泛的应用,但由于检测窗口小而导致其检测灵敏度低。为了提高检测灵敏度,目前已发展了多种毛细管电泳在线聚焦和样品预浓缩技术,如场放大样品堆积、pH调节浓缩、胶束电动毛细管色谱、等速电泳等。这些技术由于能够在毛细管内同时实现样品的聚焦和分离、操作简便而获得了广泛的兴趣和关注。本文针对毛细管电泳的在线聚焦的原理、技术和应用做一简要的介绍和总结。  相似文献   

11.
A novel online method is developed, using liquid chromatography (LC)-accurate radioisotope counting dynamic-flow (ARC) coupled with a radioactivity detector and mass spectrometer, for metabolite identification in drug discovery and development. This method offers the advantages of improved sensitivity for detecting radiolabeled drugs as well as streamlining the process of identifying and characterizing metabolites. For the purposes of evaluating this method, in vitro human liver microsomal incubations with [(14)C]dextromethorphan are conducted. Online separation and identification of [(14)C]dextromethorphan metabolites are achieved without intensive sample preparation, concentration, or fraction collection. Mass spectrometric analysis identified and characterized the metabolites of dextromethorphan formed by N - and O -dealkylation, correlated well with previously published results. Chromatographic peaks for [(14)C]dextromethorphan and its metabolites are collected online, then infused for extended periods of time at a flow rate of 10 microL/min while maintaining the column pressure. The continuous analytical signal input allowed acquisition of a higher order of multistage fragmentation for both major and minor metabolites. The multistage MS fragmentation pattern obtained for the metabolites allowed defining the sites of metabolism for dextromethorphan. Further evaluations of this method are also conducted using a [(14)C]compound A to check the linearity and sensitivity of the dynamic-flow method. The R(2) value is 0.996 for the dynamic-flow method between 50 and 600 disintegrations per minute (dpm); the limit of detection for LC-ARC is 20 dpm, which is approximately 10 times more sensitive than conventional continuous-flow radioactivity detection techniques. The overall results suggest that the combination of LC-ARC with radioactivity detection and mass spectrometry has great potential as a powerful tool for enhancing the sensitivity of radioisotope measurement in metabolite identification studies during drug discovery and development.  相似文献   

12.
The availability of pharmaceuticals to treat and to prevent disease has brought great benefit. Nevertheless, attention is being drawn to the uncontrolled use and careless disposal of medications for humans and animals. These compounds and their metabolites are found in the environment and foodstuffs, with possible adverse risks to human health.Detection of pharmaceuticals and residues in environmental and biological matrices has become a priority for governmental agencies. However, current analytical methods capable of detecting pharmaceuticals at very low levels require time-consuming sample preparation, concentration and/or extraction prior to analysis.Biosensors offer several advantages over existing techniques (e.g., less time, high-throughput screening, improved sensitivity, real-time analysis and the possibility of developing label-free detection methods and devices). Also, incorporation of nanotechnology into biosensor systems may increase the speed and the capability of the diagnostic methods. Moreover, the possibility of using biosensor systems in different configurations allows us envisaging their implementation as point-of-care systems or multiplexed devices.This review provides a general overview of the progress, the limitations and the future challenges of biosensors for detecting pharmaceuticals.  相似文献   

13.
本研究以721矿和745矿嗜酸性氧化亚铁硫杆菌为研究对象,采用常压化学电离质谱直接分析其代谢产物,分别考察了顶空采样( Headspace sampling)、界面采样( Interface sampling)和中性解吸采样( Neutral desorption sampling)3种进样方式对电离效果的影响。在优化条件下,常压化学电离质谱对微生物纯菌种和混合菌种的代谢产物均具有良好的分析能力,可根据获得的代谢产物指纹谱图结合主成分分析( PCA)方法和聚类分析( CA)方法区分2个放射性强弱不同区域共4类嗜酸性微生物样品,并对主要胺类、酯类等代谢成分进行串联质谱鉴定,为耐辐射微生物的相关研究提供了一种可借鉴的分析方法。  相似文献   

14.
Abstract

5-fluorouracil (5-FU) refers to a fluorinated pyrimidine analogue that has been widely used as an anticancer agent for colon, head, and neck cancers. Detection of 5-FU and its metabolites; 5-fluorouridine and 5-fluoro-2-deoxyuridine in biological samples allows optimization of pharmacotherapy and encourages fundamental investigations of this medication. The development of accurate and reliable sample preparation, as well as analytical methods, is critical to isolate targeted analytes from complex matrices, apart from increasing detection sensitivity of analytes. With that, this paper presents a review of prior studies pertaining to chromatographic and electrophoretic methods that focused on the analysis of 5-FU and its metabolites in biological matrices such as plasma and urine. This paper concentrates on HPLC, GC and CE systems, which are the most commonly used strategies for analytical separation of 5-FU and its metabolites from samples. Detection of these antineoplastic agents at trace level demands highly sensitive and selective analytical methodologies. Application of these analytical techniques to biological matrices is reviewed with a focus on method development strategies, including types of mobile phases and background electrolytes employed in LC and CE systems.  相似文献   

15.
Trichloroethylene (TCE) and some of its metabolites are potentially carcinogenic compounds that the general population is commonly exposed to in drinking water. Concentrations of TCE, dichloroacetic acid (DCA) and trichloroacetic acid (TCA) given to laboratory animals in cancer bioassays are high, whereas drinking water levels of the compounds are very low. It is not clear whether the trace amounts of TCE, DCA and TCA in drinking water pose a cancer risk to humans. The accuracy of pharmacokinetic studies relies on the analytical method from which blood and tissue concentration data are obtained. Models that extrapolate cancer risks of TCE and its metabolites from laboratory animals to humans, in turn, rely on the results of pharmacokinetic studies. Therefore, it is essential to have reliable analytical methods for the analysis of TCE and its metabolites. This paper reviews the methods currently in the literature for the analysis of TCE, DCA, TCA and, to a lesser extent, chloral hydrate (CH). Additional aspects of analytical methods such as method validation, species preservation and future directions in the analysis of TCE and its metabolites are also discussed.  相似文献   

16.
报道了血样中异烟肼的串联质谱快速分析,利用这种分析方法,证实了一男性死者血样中异烟肼及其代谢产物的存在,从而为法庭诉讼提供了可靠的证据。这种方法具有快速性,高灵敏度和高选择性,适合于需要快速分析的场合。  相似文献   

17.
Imaging mass spectrometry (IMS) studies increasingly focus on endogenous small molecular weight metabolites and consequently bring special analytical challenges. Since analytical tissue blanks do not exist for endogenous metabolites, careful consideration must be given to confirm molecular identity. Here, we present approaches for the improvement in detection of endogenous amine metabolites such as amino acids and neurotransmitters in tissues through chemical derivatization and matrix‐assisted laser desorption/ionization (MALDI) IMS. Chemical derivatization with 4‐hydroxy‐3‐methoxycinnamaldehyde (CA) was used to improve sensitivity and specificity. CA was applied to the tissue via MALDI sample targets precoated with a mixture of derivatization reagent and ferulic acid as a MALDI matrix. Spatial distributions of chemically derivatized endogenous metabolites in tissue were determined by high‐mass resolution and MSn IMS. We highlight an analytical strategy for metabolite validation whereby tissue extracts are analyzed by high‐performance liquid chromatography (HPLC)‐MS/MS to unambiguously identify metabolites and distinguish them from isobaric compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The bioanalysis of the oral anticancer drug capecitabine and its metabolites has been investigated extensively over the past years. This paper reviews methods for the bioanalysis of capecitabine and its metabolites. The focus of this review will be on sample pre-treatment, chromatography and detection. Furthermore, the choice of standards and analytical problems encountered during analysis of capecitabine and its metabolites in biological matrices will be discussed. The major challenges in the bioanalysis of capecitabine and its metabolites are the simultaneous extraction and analysis due to the differences in polarity of the analytes. Furthermore we evaluate currently described methods for the quantification of capecitabine and its metabolites. Future wishes and perspectives are stated that could serve as an inspiration for further development of assays for the quantification of capecitabine and its metabolites.  相似文献   

19.
The study of the metabolic fate of drugs is an essential and important part of the drug development process. The analysis of metabolites is a challenging task and several different analytical methods have been used in these studies. However, after the introduction of the atmospheric pressure ionization (API) technique, electrospray and atmospheric pressure chemical ionization, liquid chromatography/mass spectrometry (LC/MS) has become an important and widely used method in the analysis of metabolites owing to its superior specificity, sensitivity and efficiency. In this paper the feasibility of LC/API-MS techniques in the identification, structure characterization and quantitation of drug metabolites is reviewed. Sample preparation, LC techniques, isotope labeling, suitability of different MS techniques, such as tandem mass spectrometry, and high-resolution MS in drug metabolite analysis, are summarized and discussed. Automation of data acquisition and interpretation, special techniques and possible future trends are also the topics of the review.  相似文献   

20.
1-alpha-acetylmethadol (LAAM) is a new drug under development for the treatment of heroin dependence. A new analytical method applicable to the accurate biodispositional study of the drug and its metabolities is described and critically discussed in this report. The procedure involves sample preparation and direct organic solvent extraction using eta-butyl chloride, amide derivatization by molecular rearrangement, and gas chromatography-chemical ionization mass spectrometry-selected ion monitoring, with methane as the carrier and ammonia as reagent gases. Deuterated (d3 stable isotopes of LAAM and its metabolites are used as internal standards. The method is free from qualitative interferences and has quantitative sensitivity to 5 ng/ml for 2.0 ml samples with 10-15% accuracy and precision in the range 5-100 ng/ml; and 2-5% at concentrations up to 750 ng/ml. Specimens of plasma, whole blood, urine, bile, brain, liver, and other visceral samples have been successfully analyzed, as well as in vitro preparations such as hepatic microsomes. By appropriate data processing, the method lends itself to routine analysis and high volume work; even manually the method is capable of at least 50 samples per week. A simplified procedure for the analysis of LAAM and its metabolites in urine only is also presented and discuet up and use the methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号