首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
红外相机共孔径双波段成像光学系统   总被引:1,自引:0,他引:1  
汤天瑾  李岩 《应用光学》2015,36(4):513-518
针对双波段成像系统可以有效提升红外相机的目标探测与识别能力,选择了折反射式双波段系统结构形成,提出共孔径分光路中波红外和长波红外双波段成像光学系统。2个谱段共用卡塞格林主光学系统,采用分色片实现双谱段分光。分光后2个谱段采用相互独立的中继透镜组, 通过二次成像,实现双波段冷光阑100%匹配。2个谱段焦距均为800 mm,工作谱段为3.7 m~4.8 m和7.7 m~10.3 m,中波和长波的F数分别为2.3和2.8,视场角为1.2,该光学系统各谱段在各自乃奎斯特频率处调制传递函数接近衍射极限,可满足实际使用需求。  相似文献   

2.
双波段共孔径相机可兼顾近红外和可见光两者优势,即能保证丰富色彩信息的获取,也可充分利用近红外探测较好的穿雾和高灵敏度弱光探测能力。设计了工作波段为450 nm~650 nm和750 nm~900 nm的双波段共孔径相机,其视场角为35°×20°,F数为1.5,采用全球面复杂化双高斯结构。设计结果表明:MTF>0.4(@50 lp /mm),系统弥散斑 < 10 μm,畸变 < 3%,可满足指标要求。  相似文献   

3.
针对红外搜索跟踪系统对目标的探测,为提高光学系统在复杂背景下的探测能力,设计了双色红外共口径光学系统。系统工作波段为红外中波3 m~5 m和红外长波8 m~12 m,采用分光型RC系统实现双波段共孔径清晰成像,总焦距为400 mm,相对孔径D/f=1/2,全视场角为2,为了抑制中波的热辐射杂光,对中波系统实现了二次成像,通过红外材料与光焦度的合理分配实现了折反式被动消热差设计。设计结果表明,系统在-40℃~+60℃工作温度下像质优良,能够满足红外搜索跟踪系统的使用需求。  相似文献   

4.
为解决现有的共孔径双波段相机成像质量差、结构复杂、体积庞大的问题,提出了一种可见/长波红外双色光学系统设计.在两个波段共用前端反射结构、主镜背部加分色镜,实现了可见光与长波红外同时成像,保证了系统结构的紧凑性.分析了分色镜对红外波段成像的影响,以及分色镜偏离竖直方向不同角度的影响.对红外波段的校正系统及像面进行了?2....  相似文献   

5.
为了提高光电探测设备目标探测与识别的能力,设计了一套可见/中波双波段共口径光学系统。根据实际工程经验总结了一套分段设计、组合优化的光学设计方法,通过合理地分配光焦度,分段选择合适的初始结构,再现了双波段共口径光学系统初始结构的设计过程;结合CodeV和TracePro软件量化了制冷型中波红外探测系统的冷反射现象,并且通过外场试验成像验证了分析结论的正确性。双波段共口径光学系统最大视场达到1.25°,畸变小于0.1%,可以在环境温度?30 ℃~50 ℃下工作,中波红外探测系统实现了100%冷光阑匹配,可见光探测系统可以实现大、小视场的切换,双波段成像系统具有调焦、调光功能。该系统成像质量良好、可加工性好、装配难度小、工程可实施性强。  相似文献   

6.
7.
空间双波段成像光谱仪红外光学系统的设计   总被引:5,自引:8,他引:5  
分析了空间双波段成像光谱仪光学系统的光学特性,提出利用光学材料间焦距位移系数的互补性,实现光学系统消热差、消色差设计方法,建立了一组既消热差又消色差的方程组. 给出了利用这种方法设计的视场角10°,焦距100 mm,F数为1.98,温度范围在-20℃~70℃,工作波长为3~5 μm和8~11 μm具有100%冷光栏效应的双波段消热差、消色差光学系统,分析了系统各波段传递函数、波前差及像面位移随温度变化关系.  相似文献   

8.
针对机载小型轻质和宽温度场的使用需求,基于光学被动消热差理论,设计了共孔径共视场分光路可见光和红外双波段无热化成像光学系统。两个谱段共用卡塞格林主光学系统,采用分色片实现双谱段分光。分光后两个谱段采用相互独立的中继透镜组。红外波段通过二次成像,实现双波段冷光阑100%匹配。通过共视场设计提高不同探测波段目标的信息一致性。可见光和红外谱段焦距分别为1750mm和1000mm,工作谱段为0.45~0.9μm、3~5μm,入瞳孔径为250mm,视场角1.1°,光学系统各谱段耐奎斯特频率处调制传递函数接近衍射极限,在宽温度场范围内像质稳定,完全能够满足实际使用需求。  相似文献   

9.
严修齐  付跃刚 《应用光学》2014,35(2):221-225
根据系统要求,进行激光与中波红外复合制导光学系统设计。该系统红外工作波长为3 m~5 m,激光工作波长为1.064 m,系统接收口径为250 mm,F数为1.4,要求MTF在33 lp/mm时大于0.4,光学透过率大于60%,使用的红外焦平面阵列像元数为640像素512像素,像元尺寸为15 m15 m。因为系统具有大孔径,小F数的特点,因此选择使用折反射式结构进行二次成像,并进行消热差处理。  相似文献   

10.
李西杰  刘钧  陈阳 《光子学报》2016,(10):46-55
为了提高变焦光学系统在复杂环境下的高分辨率探测能力,解决现有多波段光学系统中光路转换和波段切换耗时长、系统反应慢、不同波段目标信息存在差异的问题,设计了一种可见光(0.38~0.76μm)、中红外(3~5μm)共口径连续共变焦光学系统,系统工作焦距为7.52~98.35mm,变焦比为13×.基于正组补偿变焦理论分析了任意变焦位置处可见光、中红外变焦比的差异及其变化规律,推导了三片薄透镜消色差理论和双波段焦距补偿表达式.对变倍组和补偿组的光焦度进行合理匹配,使系统在任意变焦位置处的焦距及变焦比都相同,提高了双波段目标信息的一致性.根据使用要求,采用光学被动式完成双波段光学系统在-40~+60℃温度范围内的消热差设计.设计结果表明,系统结构紧凑,反应速度快,整体成像质量良好,可实现昼夜全天候工作.  相似文献   

11.
张博  张峰  刘永强 《应用光学》2022,43(4):654-660
针对军用光电系统对视场范围、图像质量和系统小型化的迫切需求,根据指标要求设计了一种大口径离轴三反光学系统。采用离轴多反式结构消除系统遮拦,缩减结构尺寸,通过引入复杂面型实现大孔径设计,在保证足够分辨率的同时,增大光学系统的视场角,以获得更加丰富的目标特征,提高了系统的目标探测和识别能力。与透射式结构与折返式结构相比,大幅度减小了光电产品的体积和质量,有效减轻了伺服设计负荷,具备隐蔽性好、光谱覆盖范围广、透过率高、视场兼容性强的特点。设计结果表明:电视光路在120 lp/mm处全视场MTF>0.2,短波红外光路在60 lp/mm处全视场MTF>0.3,中波红外在30 lp/mm处全视场MTF>0.15,网格畸变小于0.5%,满足设计指标要求。  相似文献   

12.
为了在复杂及伪装的红外背景中识别出小温差目标,本文提出了一种基于分孔径的偏振成像系统结构,并对分孔径偏振成像系统所采用的分孔径成像系统及中继成像系统进行了设计研究。首先,根据Stokes矢量介绍了系统的工作理论和光学结构;其次,在现有探测器的结构参数要求下,计算出了光学系统的偏心量等参数,选择硅、锗作为透镜材料。在此基础上,确定了分孔径成像系统结构和中继成像系统结构。接着使用离轴偏心多重结构设计方法对初始结构进行了优化,研究了将普通红外物镜转变为具有实入瞳的像方远心结构的方法;最后,完成了分孔径成像系统和中继成像系统的整体系统匹配。设计结果表明,整体系统的调制传递函数在探测器奈奎斯特频率为17 lp/mm处大于0.6,能够满足系统的设计要求。本文设计的结构可以对探测目标实现实时偏振成像,且具有结构紧凑的优点。  相似文献   

13.
基于衍射元件的特殊成像性质,使用双层衍射元件进行双波段红外光学系统设计已成为研究热点。使用双层衍射元件能够有效提升宽波段的衍射效率,在简化系统结构的基础上提高像质。将红外成像系统设计为制冷型结构,能够消除背景噪声干扰,保证100%的冷光阑效率。基于带宽积分平均衍射效率最大化方法,设计了一款含有双层衍射元件的制冷型双波段红外光学成像系统,实现了在双波段红外和宽温度范围下的无热化设计。光学系统含有三片透镜,仅由两种材料组成,入瞳直径为80 mm,焦距为100 mm,F数为1.25,有效视场为6°,工作波段为3.7~4.8μm和8.0~12.0μm,工作环境温度为-40~60℃。分析结果表明,在整个温度范围内,在17 lp/mm截止频率处,双波段红外光学系统所有视场的调制传递函数分别高于0.78和0.59,同时双层衍射元件在红外双波段的带宽积分平均衍射效率分别为99.35%和98.73%,综合带宽积分平均衍射效率为99.04%。此光学系统的结构设计简单,成像质量好,在军事和商业应用中具有一定优势。  相似文献   

14.
针对机载小型化、轻量化的环境要求,将红外和电视传感器进行共次镜形式的共光路设计。对于640480非制冷焦平面探测器,设计了焦距185 mm、 F数达到1.3、视场为5.8的长波红外光学系统。对于1/3 CCD(像面尺寸4.8 mm 3.6 mm;像素数759596),设计了焦距86 mm、F数达到4.5、视场为4的可见(电视)光学系统。  相似文献   

15.
陈洁  夏团结  杨童  杨磊  谢洪波 《光学学报》2023,(12):192-201
为提高导引结构的特征分辨能力和全天候工作能力,提出一种长波红外与激光共孔径的双模导引光学系统设计方案,利用被动红外模块搜索目标,通过主动激光雷达模块锁定目标并精确制导。为解决导引头内光学系统尺寸受限的问题,以Ritchey-Chretien结构为共用部分,通过次镜镀分光膜实现长波红外(8~12μm)反射光路与激光(1.064μm)透射光路的组合,并分析了不同光学遮拦情况对非相干成像系统调制传递函数衍射极限的影响。展示了F数为0.98、光学遮拦比为1/3的共孔径双模导引系统的实例,使用多片折射镜片实现对主、次镜残余像差的补偿,利用光学被动式消热差方法完成-40~60℃范围的长波红外无热化,具有良好的热稳定性和可加工性,可为双模导引光学系统的分析与设计提供参考。  相似文献   

16.
采用双层Kinoform型衍射光学元件,设计了一种能够同时在红外中波(MWIR)3~5μm和长波(LWIR)8~14μm波段内工作的双波段光学系统。系统仅使用两种材料(ZnS和ZnSe)和四片透镜,实现了焦距100mm、F数1.2的长焦距、大相对孔径光学系统设计。通过数值仿真运算,合理地选择双层衍射光学元件的两种基底材料及设计波长,衍射光学元件的带宽积分衍射效率超过96%。系统像差得到了很好的校正,成像质量良好,中波所有视场调制传递函数(MTF)(14.3lp/mm)大于0.7,长波大于0.65,且接近衍射极限,同时分析了衍射效率对系统MTF的影响。最后利用Matlab软件绘制了衍射表面微结构仿真图,两个衍射面的最大闪耀深度分别为179.3μm和159.4μm,最小特征尺寸为1.41mm,完全满足目前金刚石车削工艺的加工要求。  相似文献   

17.
为了使红外场景投射器投射出的红外场景更加逼真,设计了一入瞳距800mm、入瞳100mm和视场为±2.5°的双波段红外场景投射器投影光学系统。研究了红外场景投射器双波段投影光学系统的设计过程,分析了初始结构选择的方法。该系统可以模拟主要发出波长为3~5μm的高温物体和波长为8~12μm的常温物体,可以分别使用3~5μm波段红外探测器和8~12μm波段红外探测器进行观测,并对该系统进行了像质评价和公差分析。  相似文献   

18.
对双波段红外扫描成像光学系统进行了研究,结合三次成像技术和100%冷光栏效率技术,设计了一个共口径双通道红外扫描成像光学系统。该系统包括前端共用的双反射系统、分束镜、准直镜组、扫描镜和成像镜组。光波经过双反射系统在主镜之后被分束镜分成中波红外通道(3 m~5 m)和长波红外通道(10 m~12 m),经准直镜组及成像镜组会聚探测器上,实现中波红外系统与长波红外系统共口径同步成像。设计结果表明,长波红外系统传递函数在18 lp/mm处达到0.4以上,中波红外系统传递函数在18 lp/mm处达到0.78以上,满足实际应用的要求。  相似文献   

19.
大孔径红外光学系统往往易受自重和环境温度影响造成像质恶化,引入自适应光学技术的红外自适应系统能够很好地解决该问题,为此设计了一个用于Hartmann-Shack波前检测的红外自适应光学系统。重点设计了10×可见光与中波红外双波段望远镜,物镜为卡赛格林反射物镜组,无需消色差,在可见光与中波红外2个波段实现了消色差目镜设计;还设计了红外成像中继光学系统,可实现100%冷光阑效率,并补偿望远镜在中波红外波段的残余像差,使最终设计的光学系统MTF接近衍射极限,达到了0.5以上,满足设计指标要求。  相似文献   

20.
苏永鹏  谢洪波  王瑶  杨磊 《应用光学》2018,39(6):767-772
为了同时获得目标的红外图像信息和光谱信息,设计了一种分孔径中波红外分波段成像光学系统。该系统可将位于成像器前方不同波段的目标红外场景通过分孔径方式成像到红外制冷型探测器的4个区域上。该系统通过内部分孔径的办法,在不同通道内放置滤光片的方式,实现在一个探测器上对3.5 μm~4.1 μm、4.4 μm~5 μm、3.5 μm~5 μm、4.4 μm不同波段的目标同时成像。该系统F数为1.93,单通道的焦距为60 mm,MTF接近衍射极限,同时实现了在-40℃~+60℃的无热化需求,可以满足应用和指标需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号