首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用水热法合成了Ce0.8Zr0.2O2固溶体,再经浸渍法负载活性组分制备了CuO/Ce0.8Zr0.2O2催化剂,考察了柠檬酸量对Cu O/Ce0.8Zr0.2O2催化剂结构、性质及其催化水气变换反应制氢性能的影响。结果表明,不同柠檬酸量制备的CuO/Ce0.8Zr0.2O2催化剂的催化活性主要与Cu比表面积、还原性能及Ce0.8Zr0.2O2固溶体与Cu O之间的相互作用有关。其中,柠檬酸浓度为0.04 mol/L所制备的催化剂具有较大的Cu比表面积,较低的Cu O还原温度和较强的Ce0.8Zr0.2O2固溶体与CuO之间的相互作用,在水气变换制氢过程中具有较高的CO转化率,表现出了较好的催化...  相似文献   

2.
制备了系列甲烷化学链燃烧用CeO2/Co3O4复合氧载体,采用XRD、H2-TPR、甲烷程序升温和恒温反应对氧载体进行了表征与评价。研究了不同CeO2的负载量对复合氧载体的结构、氧化还原性、产物选择性的影响。结果表明,氧化铈的添加不仅降低了氧载体的初始反应温度,还延长了有效反应时间,但铈添加量过高会降低产物CO2选择性,使甲烷向部分氧化进行。CeO2(30%)/Co3O4氧载体在650 ℃经20次循环后甲烷转化率和CO2选择性均未明显降低,表现出较高的活性和化学链循环稳定性。  相似文献   

3.
采用二次生长法在多孔α-Al2O3载体上制备MFI型(ZSM-5和silicate-1)分子筛膜;通过XRD和SEM检测,证明所合成的分子筛膜为致密、交联和无取向的MFI型分子筛膜,厚度为5 μm;单组分气体渗透实验检测中,所制备样品膜的N2渗透量均小于10-11 mol/(m2·s·Pa),可认为其无缺陷;同时,考察了样品分子筛膜对H2S/CH4混合气的分离效果,在渗透压分别为0.3和0.5 MPa时,silicate-1分子筛膜的H2S/CH4的分离因子分别为1.99和4.44,而ZSM-5分子筛膜的CH4/H2S的分离因子分别为6.71和12.85。  相似文献   

4.
采用共沉淀法制备了一系列具有类水滑石结构前驱体的Ni/CaO-Al2O3复合催化剂,考察了制备过程中焙烧温度对复合催化剂结构及性能的影响。结果表明,焙烧温度可调控活性组分Ni与载体之间的相互作用力,进而调变复合催化剂的比表面积、活性组分Ni的颗粒粒径。当焙烧温度为700 ℃时,Ni与载体之间相互作用力适宜,复合催化剂具有最大的比表面积(21.42 m2/g)和最小的Ni颗粒粒径(19.51 nm);该复合催化剂在CO2吸附强化CH4/H2O重整制氢过程中可得到98.31%的H2浓度和94.87%的CH4转化率,循环10次后,H2浓度仍能保持在97.35%以上。这是因为大的比表面积为反应提供了更多的活性位点,利于CO2吸附过程的强化,而小的Ni颗粒粒径提高了复合催化剂的抗烧结能力。  相似文献   

5.
以不同方法制备了系列Fe2O3/Al2O3氧载体,采用XRD、H2-TPR、CH4-TPR、O2-TPD和BET等分析技术对氧载体进行了表征。研究了不同Fe2O3负载量氧载体的甲烷化学链燃烧性能,考察了不同制备方法对Fe2O3/Al2O3氧载体结构、反应性和产物选择性的影响。结果表明,Fe2O3负载量对氧载体活性及产物中CO2选择性的影响较大,负载量较低时氧载体活性较低且引起甲烷部分氧化产物CO含量增加。制备方法亦对氧载体与甲烷的反应活性有所影响,整体上共沉淀法制备的质量分数60%Fe2O3/Al2O3氧载体具有较高的氧化活性和化学链循环稳定性。其在反应温度850℃、反应时间15 min、30次循环后甲烷转化率及产物中CO2选择性均未见明显降低。  相似文献   

6.
张恒  王婷婷  林维明 《应用化学》2009,26(11):1328-1331
利用柠檬酸络合法制备了SrFe(Cu,Ti)O3-δ混合导体透氧材料。 采用XRD、O2-TPD、H2-TPR、SEM等测试技术考察了材料的稳定性。 结果表明,SrFe0.7Cu0.3O3-δ在低氧压下会发生相分解,产生SrCuO2杂相,而掺杂Ti后的SrFe0.6Cu0.3Ti0.1O3-δ在低氧压下保持单一的钙钛矿结构。 H2-TPR和O2-TPD的测试表明,Ti4+的掺杂提高了材料的氧脱附起始温度和其它金属离子的还原温度。 SrFe0.6Cu0.3Ti0.1O3-δ膜在透氧过程中,会有Cu2+和Sr2+从钙钛矿结构中析出,在原晶粒边界形成新的小晶粒,但这种轻微的组分偏析没有影响到材料的透氧量,此透氧膜在66 h的操作过程中显示了良好的稳定性。  相似文献   

7.
杨辉  张金锋  代凯 《催化学报》2022,(2):255-264
近年来,随着人口的增加,汽车尾气的排放和化石燃料的燃烧加剧,大气中的二氧化碳含量持续增加.光催化技术是根本上解决上述问题的有效方法之一.但目前光催化技术存在催化效率低、载流子易复合等缺点.二维SnNb2O6纳米片能够有效缩短光生电子从材料内部到材料表面的传输距离,减少电子和空穴在光催化剂中的复合.但SnNb2O6的带隙较宽,导致可见光吸收率较低,而且在单一的半导体材料中,强氧化还原能力和高可见光吸收能力难以共存.CdSexS1-x-DETA是一种直接带隙半导体,在可见光范围内可调节带隙.为了提高SnNb2O6的光催化活性和光吸收范围,在两种半导体材料之间设计异质结是一种有效的方法.其中,梯型(S型)异质结可以有效促进光生电子-空穴对的分离和转移,并保持强大的氧化和还原能力,在有效降低电子空穴对的复合速率的同时,增强光催化剂的活性和稳定性.本文通过溶剂热法设计制备了S型Cd Se0.8S0.2-DETA/SnNb2O6异质结构材料,利用X射线衍射(XRD)可以观察到除Cd Se0.8S0.2-DETA和SnNb2O6物相外,没有其它组分.采用扫描电子显微镜和透射电子显微镜(TEM)进一步观察了光催化剂的结构和形貌,结果表明,一维的Cd Se0.8S0.2-DETA生长在二维SnNb2O6纳米片上;能谱分析也证实该催化剂仅包含Cd Se0.8S0.2-DETA和SnNb2O6中的元素,无其它杂质;TEM的晶格条纹进一步表明两种物质是复合在一起的,不是机械的混合物.紫外可见光漫反射光谱(UV-Vis)结果表明,Cd Se0.8S0.2-DETA和SnNb2O6的吸收带边分别为1.71和2.52 e V.随着复合样品中Cd Se0.8S0.2-DETA含量的增加,其可见光吸收范围增大.光电流和阻抗响应图谱表明,Cd Se0.8S0.2-DETA/SnNb2O6复合材料具有较高的光响应和较低的阻抗,有利于电子空穴的运输.光催化CO2还原测试结果表明,30%Cd Se0.8S0.2-DETA/SnNb2O6催化CO2还原生成CO的产率(17.31μmol·g-1·h-1)最高,分别是SnNb2O6(6.2μmol·g-1·h-1)和Cd Se0.8S0.2-DETA(3.6μmol·g-1·h-1)的2.8倍和4.8倍.XRD测试结果表明,反应后光催化剂的与新鲜光催化剂的衍射峰基本相符.催化剂经过4次循环测试后催化性能基本稳定,说明光催化剂具有较好的稳定性.XPS表征结果显示,相对于纯的Cd Se0.8S0.2-DETA与SnNb2O6,复合材料中Cd,Se与S的结合能降低,周围的电子密度增大,而复合材料中Sn,Nb与O的结合能增加,周围的电子密度降低,这表明电子从SnNb2O6到Cd Se0.8S0.2-DETA的转移路径遵循S型异质结机理.综上,本文提供了一种简单的制备S型光催化方法,可以优化能带结构以促进光生载流子的分离,从而实现高效率的二氧化碳还原.  相似文献   

8.
对基于CoFe2O4载氧体的生物质化学链气化反应进行了热力学分析,研究了载氧体添加量、温度及水蒸气含量对气化反应特性的影响。同时应用热重分析仪对CoFe2O4和生物质的气化反应特性进行了实验研究,并利用XRD对反应前后载氧体的物相组成进行分析。热力学研究表明,CoFe2O4在气化反应中能够提供晶格氧,有效促进生物质气化,提高碳转化率。随着反应温度升高,合成气中H2和CO的含量增加,CO2的含量减少。随着水蒸气含量增加,H2和CO2含量会增加,CO含量减少。添加水蒸气能够提高合成气中H2和CO的比值,改善合成气的品质。热重实验及XRD结果表明,钴优先于铁被还原,钴与铁存在协同作用,钴能够促进铁的进一步还原。随着载氧体添加量的增加,载氧体被还原的程度会降低,载氧体与生物质的最佳质量比为0.8。  相似文献   

9.
煤化学链燃烧Fe2O3载氧体的反应性研究   总被引:4,自引:2,他引:2  
利用流化床反应器并以水蒸气作为气化-流化介质,研究了温度、反应时间、循环数对Fe2O3载氧体反应性的影响。实验表明,载氧体与煤气化产物的反应性随温度升高而增强,且温度越高,反应受化学反应控制时间越短。当温度高于900℃时,煤中碳转化为CO2的比率大于90%,载氧体体现了很好的反应性,但反应温度低于850℃时,比率小于75%。反应温度900℃时,CO2干基浓度随循环数而逐渐降低,CO、CH4浓度增加,且CH4浓度值大于CO。利用XRD、SEM分析了固体反应产物成分与微观形态结构。分析表明,Fe2O3的还原产物为Fe3O4,载氧体颗粒随循环数增加而逐渐烧结。  相似文献   

10.
采用冷冻干燥法制备了经Cu修饰(10%)的Fe2O3/Al2O3氧载体。利用热重分析仪分别在850、900和950 ℃等温环境下,使氧载体交替接触还原气体和氧化气体,来模拟氧载体在化学链燃烧中的循环过程。结果表明,经Cu修饰的Fe2O3/Al2O3氧载体在850和900 ℃下的等温循环过程中反应性能都很稳定,在950 ℃时的循环反应前期有微量烧结,但在循环后期反应性能也很稳定。随着反应温度的升高,氧载体氧化速率增大,还原速率和载氧率先减小后增大。与未经修饰的Fe2O3/Al2O3氧载体相比较,在900 ℃下作等温循环实验,经Cu修饰的Fe2O3/Al2O3氧载体具有较高的载氧能力和还原速率,但氧化速率较低;两者都具有较好的循环稳定性。  相似文献   

11.
采用分步浸渍法制备了NiO/α-Al2O3、NiO-CuO/α-Al2O3和NiO-La2O3/α-Al2O3三种催化剂,运用程序升温表面反应(TPSR)技术考察了助剂CuO和La2O3对NiO/α-Al2O3甲烷催化部分氧化(CPOM)反应引发过程的影响。结果表明,无论是否经过预还原处理,NiO/α-Al2O3催化剂在CH4/O2混合气氛下进行程序升温表面反应(CH4/O2-TPSR)时,即使升高到910℃也不能引发CPOM反应。添加助剂CuO或La2O3后,NiO-CuO/α-Al2O3和NiO-La2O3/α-Al2O3催化剂在CH4/O2-TPSR过程中均可以引发CPOM反应。原因分别是CuO促进了CH4对NiO的还原以及抑制了O2对Ni0的再氧化,La2O3减小了Ni晶粒粒径和还原时扩散阻力促进NiO的还原。  相似文献   

12.
采用沉淀氧化法制备了Co3O4/CeO2催化剂。运用XRD、BET和TPR表征手段,考察了不同钴铈比及焙烧温度对钴铈复合氧化物物理及化学性能的影响,并分别在干、湿条件下进行了一氧化碳氧化反应研究。结果表明,与纯的Co3O4相比,在不同比例的Co3O4/CeO2均经723 K焙烧的各种催化剂中,钴铈原子比为9∶1的复合氧化物粒径较小,比表面积较大,说明适当比例铈的添加能使Co3O4具有较小的粒径。此氧化物经538 K温度焙烧制得的钴铈比为9∶1的复合氧化物中Co3O4平均粒径为7.2 nm, BET比表面积为167.6 m2/g。经TPR考察发现其具有最优的氧化还原性能。  相似文献   

13.
研究了用臭氧氧化法及草酸盐分解法制备Pr(Ⅳ)复合氧化物Ce0.8Pr0.2O2的过程,通过测定各种Ce:Pr摩尔比下所形成产物中Pr(Ⅳ)的含量,确定出当Ce:Pr≥4:1时,复合氧化物中的Pr(Ⅳ)全部为正四价态.X射线粉末衍射分析结果表明,化学计量式为Ce0.8Pr0.2O2的复合氧化物为面心立方晶格,其晶胞参数明显不同于CeO2和PrO2.据此推断了Ce0.8Pr0.2O2的空间结构,并讨论了Pr(Ⅳ)能稳定存在的原因.  相似文献   

14.
采用水热沉积法制备Ni-Al2O3催化剂,用于CO2-CH4重整反应;基于程序升温氢化(TPH)表征,研究了反应时间、温度、原料气CO2/CH4比例和空速等因素对CO2-CH4重整反应过程中Ni-Al2O3催化剂上表面积炭行为的影响。结果表明,表面积炭是导致催化剂重整反应失活的重要原因。随反应时间的延长,催化剂表面积炭量增多,虽未成比例增加,但其TPH峰温有向高温方向移动的趋势,表明所积之炭的石墨化程度增加。反应温度和空速对催化剂表面积炭也有一定影响,且空速的影响更大。另外,由于CO2消炭反应(CO2+C=2CO)的存在,CO2/CH4比例对表面积炭的影响也很大。CO2/CH4比例太低,不能明显抑制积炭;随着CO2/CH4比例增加,积炭将得到有效抑制,但CO2/CH4比例过高,CO2在产物中的分离和回收再利用将使成本增加。  相似文献   

15.
采用催化加氢的方式将CO2转化为甲醇,既可以减少CO2排放,又制备了化学品,该反应具有重要的研究意义.氧化铟(In2O3)作为CO2加氢制甲醇催化剂,由于其较高的CO2活化能力和甲醇选择性,被科研工作者广泛研究.其中,将具有良好解离H2能力的过渡金属元素引入In2O3(M/In2O3)是有效提高催化剂性能的策略之一,然而,M/In2O3体系催化CO2加氢反应机理及活性位点仍不清楚.本文引入Co制备了In-Co二元金属氧化物催化剂应用于CO2加氢制甲醇,结果表明,相较于In2O3,In-Co催化剂性能有很大提升,其中In1-Co4催化剂上甲醇时空产率(9.7 mmol·gcat-1 h-1)是In2O3(2.2 mmol·gcat-1 h-1)的近5倍(反应条件:P=4.0 MPa,T=300℃,GHSV=24000 cm3 STP gcat-1 h-1,H2/CO2=3).值得注意的是,尽管Co是金属元素的主体,In-Co催化剂中Co催化CO2甲烷化的活性受到明显抑制.本文还通过多种技术系统研究了催化剂结构与反应选择性转变间的关系.采用电感耦合等离子体发射光谱、粉末X射线衍射、拉曼光谱、X射线光电子能谱和透射电子显微镜等对催化剂结构以及表面性质进行了表征.结果表明,在H2还原气氛诱导下,In-Co催化剂表面发生重构,形成以CoO为核,以In2O3为壳的核壳结构,其在高压反应后仍能保持稳定;更重要的是,该核壳结构可以显著增强In-Co催化剂吸附及活化CO2的能力.CO2加氢反应动力学研究表明,Co催化剂上H2分压对CO2加氢为零级反应,而H2分压在In-Co上的反应级数为正数;In-Co催化剂上,CO2分压的反应级数接近于零,表明CO2及其衍生物在In-Co的表面吸附饱和,但在纯Co上,则不会发生这种饱和吸附.通过原位DRIFTS研究了催化反应路径和关键中间物种的吸附及反应行为,发现CO2加氢在纯Co和In-Co上的催化机理均遵循甲酸盐路径.在该催化路径中,CO2首先加氢为甲酸盐(*HCOO)物种,随后加氢为甲氧基(*CH3O).*CH3O在Co催化剂上进一步加氢生成CH4,而*CH3O在In-Co催化剂上则会脱附生成CH3OH.根据表征结果,本文认为,在还原性气氛下,In-Co发生了重构并生成表面富In2O3的核壳状结构,显著提高了催化剂对CO2和含碳物种的吸附能力.Co和In-Co催化剂对CO2加氢反应选择性的差异归因于催化剂对CO2和对*HCOO等含碳中间物种的吸附稳定性不同.CO2及其衍生的含碳中间物种在In-Co催化剂上的吸附能力比在Co催化剂上强,形成了较合适的催化剂表面C/H比,从而使*CH3O能够脱附为CH3OH,而不是进一步加氢为CH4.综上,本文研究为高活性In-Co催化剂体系在CO2加氢反应中的催化机理及行为提供了解释,为金属-氧化铟(M-In2O3)催化剂体系的设计提供了参考.  相似文献   

16.
采用催化加氢的方式将CO2转化为甲醇,既可以减少CO2排放,又制备了化学品,该反应具有重要的研究意义.氧化铟(In2O3)作为CO2加氢制甲醇催化剂,由于其较高的CO2活化能力和甲醇选择性,被科研工作者广泛研究.其中,将具有良好解离H2能力的过渡金属元素引入In2O3(M/In2O3)是有效提高催化剂性能的策略之一,然而,M/In2O3体系催化CO2加氢反应机理及活性位点仍不清楚.本文引入Co制备了In-Co二元金属氧化物催化剂应用于CO2加氢制甲醇,结果表明,相较于In2O3,In-Co催化剂性能有很大提升,其中In1-Co4催化剂上甲醇时空产率(9.7 mmol·gcat-1 h-1)是In2O3(2.2 mmol·gcat-1 h-1)的近5倍(反应条件:P=4.0 MPa,T=300℃,GHSV=24000 cm3 STP gcat-1 h-1,H2/CO2=3).值得注意的是,尽管Co是金属元素的主体,In-Co催化剂中Co催化CO2甲烷化的活性受到明显抑制.本文还通过多种技术系统研究了催化剂结构与反应选择性转变间的关系.采用电感耦合等离子体发射光谱、粉末X射线衍射、拉曼光谱、X射线光电子能谱和透射电子显微镜等对催化剂结构以及表面性质进行了表征.结果表明,在H2还原气氛诱导下,In-Co催化剂表面发生重构,形成以CoO为核,以In2O3为壳的核壳结构,其在高压反应后仍能保持稳定;更重要的是,该核壳结构可以显著增强In-Co催化剂吸附及活化CO2的能力.CO2加氢反应动力学研究表明,Co催化剂上H2分压对CO2加氢为零级反应,而H2分压在In-Co上的反应级数为正数;In-Co催化剂上,CO2分压的反应级数接近于零,表明CO2及其衍生物在In-Co的表面吸附饱和,但在纯Co上,则不会发生这种饱和吸附.通过原位DRIFTS研究了催化反应路径和关键中间物种的吸附及反应行为,发现CO2加氢在纯Co和In-Co上的催化机理均遵循甲酸盐路径.在该催化路径中,CO2首先加氢为甲酸盐(*HCOO)物种,随后加氢为甲氧基(*CH3O).*CH3O在Co催化剂上进一步加氢生成CH4,而*CH3O在In-Co催化剂上则会脱附生成CH3OH.根据表征结果,本文认为,在还原性气氛下,In-Co发生了重构并生成表面富In2O3的核壳状结构,显著提高了催化剂对CO2和含碳物种的吸附能力.Co和In-Co催化剂对CO2加氢反应选择性的差异归因于催化剂对CO2和对*HCOO等含碳中间物种的吸附稳定性不同.CO2及其衍生的含碳中间物种在In-Co催化剂上的吸附能力比在Co催化剂上强,形成了较合适的催化剂表面C/H比,从而使*CH3O能够脱附为CH3OH,而不是进一步加氢为CH4.综上,本文研究为高活性In-Co催化剂体系在CO2加氢反应中的催化机理及行为提供了解释,为金属-氧化铟(M-In2O3)催化剂体系的设计提供了参考.  相似文献   

17.
以TEAOH和TMAOH为有机模板剂,酸处理的UZM-9分子筛为晶种,采用水热法在48 h内合成出分子筛UZM-9,并对其CO2/CH4/N2的吸附分离性能进行了研究。采用XRD、ICP、TG、SEM与气体吸附等手段对晶种法合成的UZM-9分子筛结构、耐水稳定性与吸附性能进行了研究。结果表明,晶种法可以在2 d内合成出硅铝原子比在3以上、收率达到65%的UZM-9分子筛;所得分子筛的CO2吸附容量可以达到5 mmol/g以上,吸附热为34 kJ/mol,CO2/CH4、CO2/N2与CH4/N2的平均分离因子分别为100、240与2.4,CO2分离性能优良且具有一定耐水性能。  相似文献   

18.
以天然凹凸棒(ATP)为载体,分别利用机械混合法、浸渍法和溶胶-凝胶法制备了3种铁基复合载氧体。利用X射线衍射(XRD)、能谱(EDS)、N2-吸附脱附等温线等对其进行物化表征,并在900 ℃流化床中考察其煤化学链燃烧反应性能。结果表明,ATP能显著增加载氧体比表面积和抗磨损能力,并对煤转化过程有催化作用,其与Fe2O3的协同作用使初始碳转化速率显著提高。溶胶-凝胶法制备的U-Fe4ATP6表面Ca元素含量为4.3%,比表面积为4.920 7 m2/g,均高于其他两种载氧体,表现出更高的催化性能和反应活性:初始碳转化速率为0.168 min-1,平均CO2浓度为98.6%,燃烧效率为98.7%。20次反应后,U-Fe4ATP6催化性能略有降低,对应的初始碳转化速率降至0.108 min-1,停留时间t95延长到18 min;且能维持较高的反应活性,对应的CO2捕集效率和燃烧效率分别稳定在98.6%和96.7%。  相似文献   

19.
采用共沉淀法制备出复合载体TiO2-Al2O3,用N2-吸附、XRD和吡啶吸附红外光谱等手段进行表征。采用原位硫化法制备Ni-Mo-S/TiO2-Al2O3负载型催化剂,以苯酚为模型化合物研究其加氢脱氧催化性能。主要研究铝源和沉淀剂对TiO2-Al2O3复合载体性能的影响以及其作为载体对Ni-Mo-S/TiO2-Al2O3催化苯酚加氢脱氧反应的影响。结果表明,以氯化铝为铝源制备的复合载体具有较大的孔容和孔径,孔容达1.12cm3/g,孔径达18.0nm;以硫酸铝为铝源和以碳酸氢铵为沉淀剂制备的复合载体具有较大的比表面积,高达295m2/g;氨水沉淀制备的复合载体具有较多的L酸;以硫酸铝为铝源制备的复合载体形成少量的B酸。TiO2-Al2O3作为载体影响Ni-Mo-S/TiO2-Al2O3负载型催化剂加氢脱氧性能的主要因素是载体的酸性和载体的比表面积。在300℃,4.0MPa条件下Ni-Mo-S/TiO2-Al2O3催化苯酚的转化率达81.9%,产物中无氧化合物的总选择性达100%,脱氧率达79.4%。  相似文献   

20.
以K2CO3修饰的Fe2O3和ZrO2复合型氧化物为氧载体(K3-Fe70Zr30),在固定床装置上考察了温度和原料配比对煤焦化学链制氢过程中产气率及组成的影响。程序升温实验结果表明,煤焦与氧载体500 ℃时开始反应,温度高于750 ℃时反应速率快速增大;而还原态氧载体与水蒸气400 ℃时开始反应,当温度高于500 ℃时出口氢气浓度明显增大。恒温实验表明,随温度升高,产品气中CO/CO2体积比增大,导致产氢量降低。随煤焦与氧载体比例增加,产品气体中CO/CO2体积比增加,而产氢量先增大后降低,其最大值可达1.734 L/g。K3-Fe70Zr30氧载体在前两次循环能维持良好的反应活性,但在第3次循环反应中活性降低,而重新添加K2CO3之后氧载体活性恢复,表明氧载体活性降低主要是由于K2CO3的流失所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号