首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
易卓云  王欣雨  张妍  苏敏  赵博  隋广超  史金铭 《化学通报》2021,84(12):1284-1291
G-四链体是一类由Hoogsteen氢键维持稳定的,富含鸟嘌呤的DNA或RNA二级结构。人类基因组中存在大量潜在的形成G-四链体的序列,所形成的G-四链体结构能够调控基因组的稳定性、DNA复制和基因表达,其中包括很多与癌症相关基因。因此寻找能够诱导DNA的G富集区域形成G-四链体结构的配体,进而筛选潜在抗癌药物的先导化合物,已成为癌症治疗研究的热点之一。本文对近年来发现和设计的以G-四链体为靶点的小分子配体,按照靶向的G-四链体结构类型和配体的分子结构进行分类,综述了这类化合物在癌症治疗方面的研究进展,分析了相关靶向治疗存在的问题,并对未来的研究方向进行了展望。  相似文献   

2.
随着DNA G-四链体结构的发现和现代分子生物学技术对其与癌症关系的揭示,DNA G-四链体逐渐成为抗肿瘤药物研究的新靶点。c-myc启动区 G-四链体由于在细胞生长、增殖、凋亡、衰老及肿瘤形成等过程中的重要作用,成为DNA G-四链体中最受关注的序列之一。本文旨在对c-myc启动区 G-四链体的结构及靶向c-myc G-四链体的小分子配体的研究进展进行综述。首先,介绍c-myc G-四链体的生物学意义;其次,对几种常用的c-myc G-四链体的结构进行解析;最后,对以c-myc为靶点的小分子配体的研究进展及其与G-四链体的作用模式进行综述,并对目前以c-myc G-四链体为靶点、已经走向临床实验的CX-3543的开发与作用机制进行介绍。  相似文献   

3.
DNA G-四链体识别探针研究进展   总被引:1,自引:0,他引:1  
G-四链体是一种由富含鸟嘌呤核酸序列形成的独特的二级结构,广泛分布于真核生物基因组,如端粒DNA、r DNA和一系列基因中的启动子区域。G-四链体结构对很多重要的生理过程如基因的转录、复制、重组以及保持染色体的稳定性方面具有重要作用。G-四链体的特异、高灵敏检测将为进一步了解G-四链体结构在人类细胞基因组中的分布、功能和机制奠定基础,也可能为靶向G-四链体的肿瘤治疗方法提供新的思路。因而过去几十年人们一直致力于开发设计具有高选择性和高灵敏度的G-四链体识别探针,这些探针已经广泛应用于溶液中G-四链体的识别,而且具有良好的选择性。目前也有少数探针能够直接用于检测活体G-四链体结构。本文综述了一些常见的靶向G-四链体的小分子配体,以及它们在染色体和活体细胞G-四链体检测中的应用。笔者希冀本文能为设计识别G-四链体的高性能探针,进一步实现活细胞内G-四链体的检测提供借鉴。  相似文献   

4.
核酸中富含短的G-碱基重复的序列可以形成一种复杂的高级结构,称为G-四链体(G-quadruplex).在基因组中,借助生物信息学发现这类富G序列广泛分布在基因的启动子区,特别是那些参与到复制中去的基因,例如癌基因.同时发现这类序列在mRNA的5′非翻译区(5′UTR)也广泛存在.这类序列在染色体末段端粒部位的存在及功能已得到充分阐明.已知端粒富含G-碱基序列,其3′末端以单链状态存在,这使得在一些小分子的选择性作用下端粒序列很容易形成G-四链体结构,进而破坏端粒结构,影响端粒酶活性.已知端粒酶在超过85%的肿瘤中过量表达,因此,端粒酶已经成为抗癌药物设计的特殊靶点,是目前本领域的研究热点之一.已发现系列配体通过有效抑制端粒酶而表现高的抗肿瘤活性.本文主要综述了近年来端粒G-四链体分子识别及其药物靶向的最新进展,并对其作用机理做了进一步的分析和探讨.  相似文献   

5.
富含鸟嘌呤碱基的DNA序列能够通过鸟嘌呤环的互联作用形成四链螺旋结构,这种结构被称为G-四链体。G-四链体由于能够抑制端粒酶的活性而成为抗肿瘤药物的新靶点,能促使G-四链体形成或稳定该结构的物质则可能对癌症有潜在的治疗意义。本文对以G-四链体为靶点的小分子端粒酶抑制剂的研究进行了综述。  相似文献   

6.
G-四联体是抗肿瘤药物筛选的一个重要靶点.开发针对某些拓扑结构的G-四联体荧光探针对于研究其结构和生物学功能具有十分重要的意义.设计、合成了四个方酸类花菁荧光染料即CSTS,CSBE,CSEM和CSBM,并检测了其对不同类型DNA的选择性识别作用.结果表明,所合成的四个化合物在缓冲溶液中几乎没有荧光发射,加入正平行G-四联体之后荧光增强大约1 000倍;而加入反平行G-四链体或单双链DNA荧光仅仅增强几十倍,说明其可以特异性识别平行G-四联体.但流式实验结果显示,CSTS不能透过细胞膜,同时存在高荧光背景的缺点,因此无法应用于活体分析.而另外三个不带阴离子侧链的衍生物则容易进入细胞,进入细胞的难易顺序为CSBECSEMCSBMCSTS.高选择性、低背景荧光和易进入细胞等优点使CSBE具有作为近红外荧光探针检测生物样品中正平行G-四联体的潜力.  相似文献   

7.
G-四链体是由富含鸟嘌呤(G)的核酸通过π-π堆积形成的核酸二级结构.前期研究发现,G-四链体DNA对肿瘤细胞具有普遍识别和结合能力,且具有如抗肿瘤增殖等生物学活性,但G-四链体DNA的结构对其识别和结合肿瘤细胞的能力的影响还未见报道.本文采用圆二色光谱和凝胶电泳对不同连接环(loop)长度G-四链体DNA的结构和稳定...  相似文献   

8.
利用电喷雾质谱(ESI-MS)研究了12种天然产物小分子与人类端粒G-四链体结构的非共价相互作用和识别功能, 比较了不同小分子与人类端粒G-四链体的结合强弱, 发现了一种新的识别小分子——防己诺林碱对人类端粒G-四链体有很好的结合. 通过质谱升温实验比较了小分子结合对G-四链体热稳定性的影响, 防己诺林碱的结合使G-四链体的离子的解离温度(T1/2)上升到200 ℃. 利用分子模拟对G-四链体DNA与小分子结合的模式以及稳定性进行了探讨, 给出了防己诺林碱可能的结合位点和结合模式, Autodock计算出来的结合能约为-31.5 kJ·mol-1. 同原来的平面型分子不同, 防己诺林碱是一类新型结构的分子, 为设计合成新型G-四链体识别分子提供了新的结构模型.  相似文献   

9.
郑琳  王宪  张金利  李韡 《化学进展》2011,(5):974-982
G-四链体是由富G核酸形成的独特四链螺旋结构,区别于遵循A-T、G-C碱基互补配对原则形成的传统Watson-Crick双链结构.基于G-四链体的特异分子识别特性,能够引导纳米粒子的有序组装、赋予纳米器件以刺激一响应功能,使得核酸纳米技术领域的内容更丰富多样.本文介绍了G-四链体的结构多态性,从纳米材料组装和纳米器件设...  相似文献   

10.
富含鸟嘌呤的核酸序列能形成各种G-四链结构,G-四链结构具有重要的生物功能,在许多细胞内的事件如端粒DNA的保护和延长、复制、重组和转录等事件中有重要作用.一些以G-四链结构为靶点的小分子可抑制端粒酶的活性,使G-四链结构成为抗肿瘤药物设计的重要靶点.同时,某些特定序列的G-四链DNA具有抗肿瘤抗病毒等活性,如其中一个G-四链DNA T30923已经进入抗HIV-1 Ⅱ期临床研究.T30923的改进体T40214,即15聚体5′-(GGGC)4-3′,形成了一个对称而紧凑的分子内G-四链(图1),它的loop区因同时结合了两个K+而大大的增加了结构的稳定性[1].这种分子内的G-四链结构是体外抑制HIV整合酶以及抑制被感染细胞中HIV-1病毒的复制所必需的[2].为了增加T40214在体内的化学及酶稳定性,我们将异核苷分别掺入15聚体中[3],通过CD光谱、电泳等方法研究掺入异核苷的G-四链在结构和活性上的变化.  相似文献   

11.
G-四链体是由具有连续鸟嘌呤(G)序列的DNA或RNA形成的一种特殊的核酸二级结构,由于有望形成G-四链体结构的序列广泛地分布于人类基因组的许多重要区域,有关G-四链体的研究已经成为国际上的一个研究热点。本文对G-四链体构型的多态性、G-四链体热稳定性的测试手段及G-四链体在K+定量检测方面的应用研究进行了简单的介绍和评述。  相似文献   

12.
人体端粒由富含鸟嘌呤(G)的DNA重复序列组成,该序列在一定的条件下可以形成G-四链体DNA的结构.小分子化合物诱导该结构的形成并使之稳定,不但可以抑制端粒酶的活性或降低癌基因的转录表达而达到抗肿瘤的目的,还可以作为G-四链体DNA的探针,辅助G-四链体DNA生物功能的研究及与之相关疾病的诊断.因此,G-四链体DNA稳定剂的设计是近年来化学生物学的重要前沿领域之一.到目前为止,G-四链体DNA稳定剂主要可分为有机小分子化合物和金属配合物.本文重点综述这两方面特别是后者的最新研究进展.  相似文献   

13.
甲基氮杂杯[n]吡啶(MACPn)是一类柔性、多构象的新型杂杯杂芳烃化合物,溶液状态中对其构象的调控与分离一直是此类化合物研究的难点之一。我们将DNA G-四链体作为功能分子,调控甲基氮杂杯[6]吡啶(MACP6)在溶液态的构象,结果表明,HT序列在K~+条件下所形成的混合结构的G-四链体可以诱导MACP6的手性构象,而在Na~+条件下所形成的反平行结构不具备此功能。一维核磁共振氢谱、分子对接与碱基突变进一步揭示了HT G-四链体与MACP6以边沿loop为位点的构型匹配作用模式,loop区增长,有利于HT G-四链体对MACP6的调控作用。本研究再次拓展了G-四链体作为氮杂杯吡啶构象调控功能分子的应用。  相似文献   

14.
采用计算机辅助药物设计方法,将以甲基蓝为先导化合物设计的配体分子与端粒DNA、原癌基因cmyc、c-kit2等形成的G-四链体三维结构进行分子对接模拟,发现目标化合物选择性靶向c-myc G-四链体,其对接分值为7.74。以吩噻嗪为起始原料合成出目标化合物,其结构经~1H-NMR、~(13)C-NMR和HRMS等确证。采用圆二色光谱实验测试了化合物与端粒、原癌基因c-myc和c-kit2等DNA的相互作用,结果表明目标化合物选择性诱导c-myc DNA形成G-四链体。  相似文献   

15.
研究了G-四链体中的连接环(Loop)、末端碱基和一价阳离子对其结构的影响,发现在K+溶液中Loop短的序列易形成平行结构,无末端碱基时容易形成多聚体,而反平行或混合平行/反平行的G-四链体则难以形成多聚体;一价阳离子K+,NH+4和Na+促进形成平行结构及多聚体的能力依次减弱.在平行G-四链体的3’或5’端增加非G碱基,或改变阳离子使其形成非平行结构,均可抑制多聚体的形成.Loop长度影响G-四链体的热稳定性,Loop短的序列可形成很稳定的分子内结构;无末端碱基的G-四链体多聚体的稳定性低于单个G-四链体,且多聚体随着温度升高而变小.结果表明,在K+溶液中,无末端碱基的平行G-四链体序列首先形成分子内结构,然后通过π-π堆积形成多聚体;末端碱基及反平行或混合平行/反平行G-四链体中的Loop可阻碍末端堆积作用,抑制多聚体的形成.本研究为G-四链体的结构与功能研究提供了有用信息.  相似文献   

16.
利用分子动力学模拟方法, 考察了人体端粒中(3+1)混合结构G-四链体的结构及稳定性问题. 讨论了配位K+离子、药物分子(端粒抑素)和溶剂水分子对G-四链体的Hoogsteen氢键结构、π-π堆积作用的影响. 研究表明, K+离子与鸟嘌呤碱基上O6原子的配位作用减弱了对角鸟嘌呤间O6-O6的静电排斥作用, 使得相邻的四个鸟嘌呤能够以Hoogsteen氢键结合的方式形成具有近平面结构的稳定G-四平面. 另一方面, G-四平面间、G-四平面与药物分子间的π-π堆积作用降低了G-四链体复合物的总能, 有利于其稳定存在. 此外, 溶剂水分子主要分布在G-四链体的TTA环、骨架和糖环的周围, 使其位移涨落增大; 然而, 在3 ns动力学模拟中, 由于水分子没有进入到G-四链体的空腔中, 溶剂水对G-四平面的结构影响不明显.  相似文献   

17.
G-四链体是富含鸟嘌呤碱基的DNA序列通过氢键相互作用形成的四链螺旋结构. 通过小分子化合物诱导与稳定端粒G-四链体从而抑制端粒酶活性是一种新的抗癌策略. 为了研究一系列吲哚并喹啉衍生物与端粒G-四链体的相互作用, 探究其相互作用模式, 从而为实现基于G-四链体结构的药物合理设计提供依据, 使用分子对接的方法构建了吲哚并喹啉衍生物与G-四链体复合物结构, 在此基础上进行分子动力学模拟, 并使用线性相互作用能(LIE)方法计算了化合物与G-四链体的结合自由能. 结果表明: 化合物与G-四链体的主要相互作用方式由氢键、静电与π-π堆积作用构成, 侧链末端基团类型和侧链的长短是影响相互作用强弱的重要因素. 通过LIE方法计算的结合自由能与实验结果基本吻合, 相关度达到r2=0.79. 并且, 基于预测的结合模式, 总结了拥有更高活性的新型吲哚并喹啉衍生物应具有的几个结构特征.  相似文献   

18.
鸟嘌呤四链体(G-四链体)是一种特殊的核酸二级结构,它可与高铁血红素结合,形成具有过氧化物酶活性的核酶;也可增强特殊结构染料的荧光强度。G-四链体作为功能核酸中的一种,具有性质稳定、特异性好、功能多样等特点,被广泛应用于各种生化分析中。本文对近年来G-四链体在生化分析中的研究和应用进展进行了评述,对其应用前景进行了展望。  相似文献   

19.
莫艳红  李晖  王彬  徐晓慧  刘思思  曾冬冬 《应用化学》2020,37(11):1249-1261
血红素/G-四链体DNA酶是一类具有类过氧化物酶活性的DNA分子,因其具有出色的活性、易修饰性和可编程性,被广泛应用于生物传感器等领域。 本文先是简要介绍了G-四链体的结构,再主要综述了增强血红素/G-四链体DNA酶活性的策略及基于血红素/G-四链体DNA酶的生物传感器在生物标志物、微生物与生物毒素以及金属离子检测中的应用,并展望了血红素/G-四链体DNA酶的未来发展趋势。  相似文献   

20.
采用电喷雾质谱法研究了防己诺林碱与双链核酸及G-四链体的相互作用. 结果表明, 防己诺林碱可选择性地与G-四链体结合. 利用串联质谱技术对防己诺林碱与核酸的结合模式进行了研究, 结果表明, 防己诺林碱可能通过末端堆积作用与G-四链体结合, 而通过插入作用与双链核酸结合. 结合模式的差异导致防己诺林碱选择性地与G-四链体结合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号