首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
本文采用活性亚结构拼接原理,设计并合成了15个新型含哌啶的查尔酮类衍生物,利用1H NMR、13C NMR和HR-MS对结构进行表征,并初步评价了其抗宫颈癌和抗顺铂耐药宫颈癌活性作用。结果表明,化合物6g具有一定的抗肿瘤活性和逆转顺铂耐药作用;并采用Elisa法、联合顺铂用药、Western Blot和分子对接对化合物6g与VEGFR-2和P-gp靶点进行了初步的研究。本研究为基于VEGFR-2和P-gp双靶点新型分子靶向查尔酮类衍生物的设计提供了一条思路。  相似文献   

2.
为了寻找结构新颖的活性分子,采用活性亚结构拼接的方法,设计合成了24个未见文献报道的取代查尔酮-哌嗪衍生物,其结构经~1H NMR、~(13)C NMR和HRMS确证.分别采用小鼠巨噬细胞Raw 264.7炎症模型和噻唑蓝(MTT)法对目标化合物的体外抗炎活性和细胞毒活性进行测试,结果表明,查尔酮母核和哌嗪环上的取代基对化合物的生物活性有明显影响.特别是3,4,5-三甲氧基-4'-[N-(2-氧代丙基)-1-哌嗪基]查尔酮(11)能有效抑制NO的生成(IC50=3.81μmol/L),4-溴-4'-[N-(4'-甲基-2-氧代苯乙基)-1-哌嗪基]查尔酮(25)对三种肿瘤细胞株(Hela,A549和sk-ov-3)均表现出良好的体外细胞毒活性(IC50值分别为0.54,0.05和9.12μmol/L).  相似文献   

3.
冯弼曦 《化学研究》2021,32(3):217-221
氢化异香豆素骨架化合物存在于很多天然产物和药物分子当中,是非常重要的活性骨架.本文以4-羟基-6-甲基-2-吡喃酮与邻羟基查尔酮为合成子,实现了含有氢化异香豆素骨架化合物的快速合成.  相似文献   

4.
Combretastatin A-4(CA-4)是一个天然的秋水仙碱结合位点的微管蛋白抑制剂,具有抗肿瘤活性。PI3K信号通路是细胞内重要的信号转导通路之一,也是癌细胞中常见的异常表达信号通路。微管蛋白抑制剂和信号通路激酶抑制剂均为抗肿瘤药物研发的热点。设计、筛选并合成了具有秋水仙碱和PI3K双靶点的CA-4衍生物。利用SBDD技术,采用活性基团协作的方法,对CA-4进行秋水仙碱和PI3K双靶点结构改造。结合CA-4的构效关系,保留A环及3个甲氧基,以羰基取代连接双键碳以保证顺式构型,苯并呋喃环取代B环,B环侧链引入卤素增效,依据结合活性自由能打分值筛选出9种靶点活性高的衍生物进行分子对接分析及可视化分析,并通过碘代、溴代、Rap-Stoermer偶联反应和Heck偶联反应合成目标化合物CA-4,其结构经1H NMR、13C NMR和MS确证。活性测试结果表明:目标化合物对乳腺癌MCF-7和MDA-MB-231 2种肿瘤细胞具有抑制作用。  相似文献   

5.
为了合成新结构类型查尔酮衍生物,发现具有抗氧化活性的查尔酮类化合物,设计合成了查尔酮A和螺杂环B两种类型,共21个查尔酮类似物,结构经ESI-MS,ESI-HRMS和1H NMR确认.培养出螺杂环B1的单晶,通过X衍射确证了其为单斜晶系.其中螺杂环B为新结构类型化合物,通过1,3-偶极环加成反应,用不需加催化剂的"一锅煮"方法合成,该反应具有很好的立体选择性和区域选择性、且环境友好.用DPPH法测试了所有化合物的抗氧化活性,筛选出了多个对1,1-二苯基-2-三硝基苯肼(DPPH)自由基具有良好清除率的化合物,a环3,4-OH取代的两类化合物都具有良好的抗氧化活性,苯环邻位二羟基取代的查尔酮类化合物可能具有很好的抗氧化活性.  相似文献   

6.
以胡椒碱为母核进行结构改造,合成了一系列胡椒碱-双环酰胺衍生物;并用核磁共振氢谱(1H NMR),核磁共振碳谱(13C NMR)和高分辨质谱(HRMS)进行了结构确证.噻唑蓝(MTT)比色法测试结果表明,目标化合物对肾细胞(293T)、宫颈癌(HeLa)和乳腺癌(MDA-MB-321)细胞有良好的抑制活性,大多数衍生物对HeLa细胞的抑制活性优于阳性对照药5-氟尿嘧啶(5-FU)和胡椒碱.化合物6b对HeLa细胞的抗增殖活性最高,半数抑制浓度(IC50)为3.49μmol/L,对MDA-MB-321细胞的IC50值为20.89μmol/L.机理研究发现,化合物6b不仅可有效抑制HeLa细胞的迁移、侵袭、黏附和克隆能力,而且对HeLa细胞肿瘤异种移植物的生长表现出强烈的抑制作用.因此,化合物6b有可能成为肿瘤治疗中潜在的先导化合物.  相似文献   

7.
以2-噻吩乙胺与自制的查尔酮酸进行酰化反应得到酰胺类中间体5a~5j,经Bischer-Napieralski环合反应合成了10个未见报道的二氢噻吩并吡啶-查尔酮衍生物6a~6j,再经去氢反应获得2个噻吩并吡啶-查尔酮衍生物7a和7b.通过噻唑蓝(MTT)法对11种细胞进行体外抗癌活性及安全性测试.结果表明,化合物6a (p-F)、6d (o-Br)和6h (m-OCH3)对HeLa、SGC-7901细胞的抗癌活性优于紫杉醇.当短时间处理(4 h)时, 6j (3,4,5-OCH3)在不影响正常细胞MCF-10A的情况下对癌细胞MCF-7显示强效抗癌效果,值得进一步研究和开发.  相似文献   

8.
以柚皮苷为原料,经酸催化水解、O-甲基化或O-异戊烯基化反应、碱催化的开环反应合成了天然查尔酮卡瓦胡椒素A(1)和查尔酮异戊烯基醚衍生物2;然后以查尔酮1和2为底物,分别通过Mannich反应对其3'位进行了胺甲基化修饰,合成了14个未见文献报道的新型查尔酮Mannich碱衍生物3~16.所合成化合物的结构已由核磁共振谱、红外光谱和质谱所证实,并对所合成的查尔酮及其Mannich碱衍生物进行了乙酰胆碱酯酶(AChE)抑制活性测试,结果发现查尔酮Mannich碱衍生物3~5,9具有良好的AChE抑制活性.  相似文献   

9.
为了寻找活性较高的抗肿瘤新型分子,采用活性亚结构拼接的方法,将查尔酮和哌嗪连接起来,并通过衍生化,设计合成了10个未见文献报道的新型4'-(N-取代-1-哌嗪基)查尔酮衍生物3a~3j,其结构经~1H NMR、~(13)C NMR和HRMS确证.采用溴化噻唑蓝四氮唑(MTT)法测试了目标化合物体外抗肿瘤活性(Hela,A549和SGC7901),结果表明化合物3f、3i和3j均表现出良好的细胞毒活性,可做进一步研究.  相似文献   

10.
合成了一系列含噻唑烷二酮-3-乙酸结构的新型查尔酮衍生物,并对化合物进行了抗菌活性测定.结果显示,一些化合物对4种多重耐药菌显示出较强的抗菌活性,其中化合物8g,8i,8l和8m在抗耐甲氧西林金黄色葡萄球菌的最小抑制浓度(MIC)达到4μg/mL,与对照药诺氟沙星(norfloxacin)相当.另外,在64μg/mL浓度下,所有化合物对大肠杆菌1356均无明显抑制活性.  相似文献   

11.
In this study, we report on the synthesis of new organoselenium derivatives, including nonsteroidal anti-inflammatory drugs (NSAIDs) scaffolds and Se functionalities (isoselenocyanate and selenourea), which were evaluated against four types of cancer cell line: SW480 (human colon adenocarcinoma cells), HeLa (human cervical cancer cells), A549 (human lung carcinoma cells), MCF-7 (human breast adenocarcinoma cells). Among these compounds, most of the investigated compounds reduced the viability of different cancer cell lines. The most promising compound 6b showed IC50 values under 10 μM against the four cancer cell lines, particularly to HeLa and MCF-7, with IC50 values of 2.3 and 2.5 μM, respectively. Furthermore, two compounds, 6b and 6f, were selected to investigate their ability to induce apoptosis in MCF-7 cells via modulation of the expression of anti-apoptotic Bcl-2 protein, pro-inflammatory cytokines (IL-2) and proapoptotic caspase-3 protein. The redox properties of the NSAIDs-Se derivatives were conducted by 2, 2-didiphenyl-1-picrylhydrazyl (DPPH), bleomycin-dependent DNA damage and glutathione peroxidase (GPx)-like assays. Finally, a molecular docking study revealed that an interaction with the active site of thioredoxin reductase 1 (TrxR1) predicted the antiproliferative activity of the synthesized candidates. Overall, these results could serve as a promising launch point for further designs of NSAIDs-Se derivatives as potential antiproliferative agents.  相似文献   

12.
Twenty-five derivatives of glycyrrhetinic acid(GA)modified on the A-ring,at C30 and C11 positions were synthesized.Their in vitro cytotoxicity against various cancer cell lines[henrietta lacks strain o...  相似文献   

13.
Twenty newly synthesized derivatives of [6]-shogaol (4) were tested for inhibitory activity against histone deacetylases. All derivatives showed moderate to good histone deacetylase inhibition at 100 µM with a slightly lower potency than the lead compound. Most potent inhibitors among the derivatives were the pyrazole products, 5j and 5k, and the Michael adduct with pyridine 4c and benzothiazole 4d, with IC50 values of 51, 65, 61 and 60 µM, respectively. They were further evaluated for isoform selectivity via a molecular docking study. Compound 4d showed the best selectivity towards HDAC3, whereas compound 5k showed the best selectivity towards HDAC2. The potential derivatives were tested on five cancer cell lines, including human cervical cancer (HeLa), human colon cancer (HCT116), human breast adenocarcinoma cancer (MCF-7), and cholangiocarcinoma (KKU100 and KKU-M213B) cells with MTT-based assay. The most active histone deacetylase inhibitor 5j exhibited the best antiproliferative activity against HeLa, HCT116, and MCF-7, with IC50 values of 8.09, 9.65 and 11.57 µM, respectively, and a selective binding to HDAC1 based on molecular docking experiments. The results suggest that these compounds can be putative candidates for the development of anticancer drugs via inhibiting HDACs.  相似文献   

14.
A new series of novel diarylpyrazole derivatives as microtubule destabilizers were synthesized and evaluated for the anti-proliferative activities. Anti-proliferative assays were performed on the human cervix adenocarcinoma cell line (HeLa) and human gastric adenocarcinoma cell line (SGC-7901), and the compound 9s containing indole ring showed great anti-proliferative activity against HeLa cells with IC50 value of 1.9 ± 0.11 μM. Further biological studies showed that 9s was able to inhibit tubulin polymerization, disrupt the cytoskeleton, block the cell cycle in the G2/M phase, and induce cell apoptosis in a concentration-dependent manner. In addition, the results of molecular docking studies showed that compound 9s could bind tightly to the colchicine binding site of tubulin through hydrogen bonding interaction. These preliminary results recommend that compound 9s is likely to be a microtubule destabilizer that deserves further investigation.  相似文献   

15.
A new series of N’-(substituted phenyl)-5-chloro/iodo-3-phenyl-1H-indole-2-carbohydrazide (5, 6) and N-[2-(substituted phenyl)-4-oxo-1,3-thiazolidin-3-yl]-5-iodo/chloro-3-phenyl-1H-indole-2-carboxamide (7, 8) derivatives were synthesized and evaluated for their anticancer properties. Compounds 5a and 6b, selected as prototypes by the National Cancer Institute for screening against the full panel of 60 human tumor cell lines at a minimum of five concentrations at 10-fold dilutions, demonstrated remarkable antiproliferative activity against leukemia, non-small cell lung cancer, colon cancer, central nervous system (CNS) cancer, melanoma, ovarian cancer, renal cancer, and breast cancer (MCF-7) cell lines with GI50 values < 0.4 μM. A subset of the compounds was then tested for their potential to inhibit tubulin polymerization. Compounds 6f and 6g showed significant cytotoxicity at the nM level on MCF-7 cells and exhibited significant inhibitory activity on tubulin assembly and colchicine binding at about the same level as combretastatin A-4. Finally, docking calculations were performed to identify the binding mode of these compounds. Group 5 and 6 compounds interacted with the colchicine binding site through hydrophobic interactions similar to those of colchicine. These compounds with antiproliferative activity at high nanomolar concentration can serve as scaffolds for the design of novel microtubule targeting agents.  相似文献   

16.
A series of novel coumarin-3-carboxamide derivatives were designed and synthesized to evaluate their biological activities. The compounds showed little to no activity against gram-positive and gram-negative bacteria but specifically showed potential to inhibit the growth of cancer cells. In particular, among the tested compounds, 4-fluoro and 2,5-difluoro benzamide derivatives (14b and 14e, respectively) were found to be the most potent derivatives against HepG2 cancer cell lines (IC50 = 2.62–4.85 μM) and HeLa cancer cell lines (IC50 = 0.39–0.75 μM). The activities of these two compounds were comparable to that of the positive control doxorubicin; especially, 4-flurobenzamide derivative (14b) exhibited low cytotoxic activity against LLC-MK2 normal cell lines, with IC50 more than 100 μM. The molecular docking study of the synthesized compounds revealed the binding to the active site of the CK2 enzyme, indicating that the presence of the benzamide functionality is an important feature for anticancer activity.  相似文献   

17.
Twenty novel podophyllotoxin derivatives(1―20) were designed and synthesized. The anti-proliferation activities of these compounds were evaluated against three human cancer cell lines(HepG2, Calu-1 and MCF-7) using podophyllotoxin and Combretastatin A4(CA-4) as positive controls. Among all the compounds, compound 2 displayed more significant anti-proliferation activities against MCF-7 and Calu-1 cell lines and showed lower toxicity towards non-cancer cells. Furthermore, the cell cycle and apoptosis analysis results revealed that compound 2 can cause cell arrest at G2/M phase, leading to cancer cell apoptosis. Meanwhile, it can also reduce the adhesive ability of Calu-1 cells to fibronectin and laminin. The docking simulation results demonstrated that compound 10 can nicely bind to the colchicine site of tubulin. The podophyllotoxin derivatives are worthy to be further investigated to obtain more potent anti-cancer drugs.  相似文献   

18.
Multidrug resistance (MDR) is one of the serious problems in cancer research that causes failure in chemotherapy. Chromene-based compounds have been proven to be the novel anti-MDR agents for inhibiting proliferation of tumor cells through tubulin polymerization inhibition of by binding at the colchicine binding site. In this study, we screened a chromene-based database of small molecules using physicochemical, ADMET properties and molecular docking to identify potential hit compounds. In order to validate our hit compounds, molecular dynamics simulations and related analysis were carried out and the results suggest that our hit compounds (PubChem CIDs: 16814409, 17594471, 57367244 and 69899719) can prove to be potential inhibitors of tubulin. The in silico results show that the present hits, like colchicine, effectively suppressed the dynamic instability of microtubules and induced microtubule-depolymerization and cell cycle arrest.  相似文献   

19.
Sinomenine is a morphinan alkaloid with a variety of biological activities. Its derivatives have shown significant cytotoxic activity against different cancer cell lines in many studies. In this study, two series of sinomenine derivatives were designed and synthesized by modifying the active positions C1 and C4 on the A ring of sinomenine. Twenty-three compounds were synthesized and characterized by spectroscopy (IR, 1H-NMR, 13C-NMR, and HRMS). They were further evaluated for their cytotoxic activity against five cancer cell lines, MCF-7, Hela, HepG2, SW480 and A549, and a normal cell line, Hek293, using MTT and CCK8 methods. The chlorine-containing compounds exhibited significant cytotoxic activity compared to the nucleus structure of sinomenine. Furthermore, we searched for cancer-related core targets and verified their interaction with derivatives through molecular docking. The chlorine-containing compounds 5g, 5i, 5j, 6a, 6d, 6e, and 6g exhibited the best against four core targets AKT1, EGFR, HARS and KARS. The molecular docking results were consistent with the cytotoxic results. Overall, results indicate that chlorine-containing derivatives might be a promising lead for the development of new anticancer agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号