首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对向心透平叶轮内部复杂流动在级环境下进行了全三维黏性数值模拟,结合拓扑学原理分析了设计工况和非设计工况下其内流动分离及各种涡系发展的演变过程,初步建立了向心透平叶轮内的旋涡模型,阐述了流动损失的形成机理。研究表明:向心透平叶轮内部涡系与轴流式透平存在较大差别,且流动分离及涡系主要集中在吸力面侧;设计工况下向心透平叶轮内的主要旋涡包括马蹄涡、通道涡及泄漏涡,其主要表现为通道涡与泄漏涡相互影响和掺混,是主要损失的形成原因;非设计工况下,主流在叶轮叶片前缘处发生大范围的分离及回流,造成了较大的能量损失,但二次流损失所占比例较小。  相似文献   

2.
非定常叶顶间隙泄漏流动和换热的数值研究   总被引:3,自引:0,他引:3  
通过数值方法研究了带叶顶间隙的某一级半透平中的非定常流动和换热问题.数值模拟采用标准k-ω两方程湍流模型,求解非定常雷诺平均N-S方程.动叶顶部间隙取为0.4 mm.分析了动静干涉对动叶顶部间隙内泄漏流动与换热的影响.结果表明,周期性通过的上游静叶尾迹和通道涡足动叶通道中非定常现象的主要来源.流场的波动主要存在于叶顶吸力面侧中间弦长附近.叶顶换热系数波动主要存在于两个位置,一是叶顶吸力面侧,一是叶顶主泄漏通道.叶顶表面面积平均传热系数非定常计算的时均结果与定常计算获得的结果偏差小于2%.  相似文献   

3.
本文以压比为4.7的Krain叶轮为研究对象,采用CFD技术研究了不同工况下叶顶间隙泄漏流的特征,以及叶顶间隙大小和叶轮进口径向畸变对泄漏流的影响。结果表明随着质量流量减小,泄漏流引起的损失增加,泄漏涡涡核轨迹和泄漏流-主流交界面向叶片前缘移动,在失速工况下溢出叶片前缘。叶顶间隙越大,泄漏流引起的损失越大,泄漏涡涡核轨迹与叶片之间的夹角越小。增加叶顶区域流体动量,可推迟泄漏流溢出叶片前缘,反之则促进泄漏流溢出叶片前缘。  相似文献   

4.
吸力面小翼对扩压叶栅间隙泄漏的影响   总被引:1,自引:0,他引:1  
采用数值模拟方法对利用吸力面小翼方式控制压气机叶栅间隙流动进行研究。结果表明,附加吸力面小翼可以降低叶顶泄漏流速,削弱泄漏涡强度,使得泄漏涡区损失降低。不同宽度吸力面小翼在不同间隙下部可以较好地减少叶尖泄漏,在叶顶间隙为3.3%叶高时,附加相对宽度为0.5的吸力面小翼可使损失降低4.7%。叶顶压差的降低及对泄漏涡结构的改变是吸力面小翼降低泄漏掺混损失的主要原因。  相似文献   

5.
低速单转子轴流压气机突尖型失速特征   总被引:1,自引:0,他引:1  
针对低速单转子轴流压气机,采用节流阀函数进行了突尖型失速过程的数值模拟研究,以叶顶泄漏流周期性非定常波动及其周向传播特性为切入点,以失速过程中典型时刻为例,分析了失速过程中压气机内部流动的发展和演变特征。伴随压气机节流进入突尖型失速的过程,叶顶泄漏流周期性非定常波动频率和周向传播速度减小;当叶顶泄漏流轨迹与叶顶前缘额线平齐时,出现突尖型失速先兆,其流动特征表现为起始于叶片吸力面并延伸至机匣的双旋涡结构;当叶片同时出现尾缘回流和前缘溢出时,标志压气机进入完全发展的突尖型失速状态。  相似文献   

6.
叶尖小翼对扩压叶栅气动特性影响的数值研究   总被引:5,自引:0,他引:5  
通过在叶片顶端加装小翼来降低叶顶二次流的叶尖小翼技术在叶轮机械领域受到关注。本文对具有不同叶尖小翼方案的压气机叶栅进行了全三维数值模拟,并详细分析了叶尖小翼对叶顶间隙流场的影响.结果表明,合理选择叶尖小翼的安装位置及自身宽度可以在一定程度上降低叶顶泄漏损失,在叶顶吸力面侧加装宽度为5 mm的小翼可以较好的削弱泄漏流动的强度,减少泄漏涡卷吸起更多的吸力面/端壁角区的低能流体及较早地阻止上通道涡的形成和发展。  相似文献   

7.
高负荷对转压气机尾迹涡对叶顶泄漏流的影响   总被引:1,自引:0,他引:1  
采用三维非定常数值模拟方法,针对高负荷对转压气机低压转子尾迹脱落涡对高压转子叶顶泄漏流的影响开展研究。研究发现:低压转子尾迹涡以"对涡"的形式在高压转子通道中输运,顺时针与逆时针旋向尾迹涡间隔分布,对叶顶泄漏流与主流交界面法向动量产生不同影响,进而使叶顶泄漏流与主流交界面形状呈现波浪形。设计工况下,尾迹涡会使叶顶泄漏流与主流交界面的位置偏向吸力面以及后移结尾激波位置进而后移二次泄漏流产生的位置,减小压力面与吸力面结尾激波入射点之间弦长区域叶顶泄漏流与轴向的夹角,提高相应弦长区域叶顶泄漏流的轴向速度,减小高压转子叶尖区的堵塞,降低二次泄漏流产生的损失,进而提升高压转子叶尖区的等熵效率。  相似文献   

8.
本文考虑在透平进口存在热斑时,对受动静干涉和叶顶间隙影响的热斑非定常迁移特性以及近壁面区域的热负荷变化规律进行研究。结果表明:热斑在动叶通道中的形态发生较大变化,并存在冷热流体分离现象;在通道涡、泄漏流以及密度梯度产生的次流涡等涡系的联合作用下,压力面侧的热斑流体逐渐向上下端壁延伸,而吸力面侧逐渐向中叶展聚集;随着顶部间隙高度的增大,泄漏涡与通道涡的干涉作用增强,流道中心流体受泄漏涡的挤压而向压力面侧偏移,引起压力面附近温度梯度的增大,同时由于泄漏量的增加,使叶顶附近壁面两侧的传热环境均趋于恶化。  相似文献   

9.
本文对前缘弯掠斜流转子叶顶间隙内的流动特性进行了数值分析。结果表明:叶顶间隙气流与主流发生卷吸而生成泄漏涡。泄漏涡作用的区域具有较低的压力分布。在叶片通道内,泄漏涡沿着与转子旋向相反的方向朝相邻叶片的压力面移动。大间隙时的泄漏涡比小间隙时强烈。低流量时泄漏涡的作用区域比高流量时大。在各种流量特性下,叶顶尾缘近吸力面区域都存在着二次间隙流。  相似文献   

10.
尾迹涡是透平内部主要的非定常来源和重要的损失来源之一,精确模拟复杂分离湍流流动是当代CFD面临的一个挑战。本文先对透平尾迹涡研究进行了综述,然后采用高精度的DDES方法对VKI LS89进行了模拟,利用其精细的数值纹影图对尾迹涡的发展尤其是其尺度特性进行了分析并提出了物理解释。同时,对尾迹涡和激波、压力波的相互作用进行了分析。研究表明,叶片附近吸力面侧尾迹涡对主流的堵塞作用以及涡对中两个涡的相互作用对尾迹涡尺度特征起决定作用。激波和压力波对尾迹涡存在扰动和耗散,增加了尾迹涡的不稳定性。  相似文献   

11.
本文针对导叶展弦比对部分进气涡轮性能的影响进行了数值研究。结果表明:转子前缘靠近导叶吸力面边界处流动发生分离形成分离涡,使得损失增加;展弦比增加能增加进气区转子前缘靠近导叶吸力面处主流速度,进而降低分离涡强度并降低部分进气效应对进气区中心区域流动的影响,改善进气扇区中心区域流动,从而减少损失提升效率。与此相反,叶高、稠度不变时展弦比增加使得叶片数增加,叶型损失增加,且进气度越大,叶型损失增加量越大。当进气度小于50%时,进气扇区较小,展弦比增加诱发的分离涡强度降低的作用效果明显强于叶片数增加的影响,二者的综合作用使得涡轮效率得到提升;当进气度大于50%以后,分离涡对进气扇区中心区域的影响降低,分离涡强度的降低仅能改善进气区边界靠近导叶吸力面处的流动状态,但此时叶片数增加导致的叶型损失会显著增加,二者的综合作用导致涡轮效率提升的幅度降低。  相似文献   

12.
风力机气动性能受静态失速与动态失速影响很大,对风力机翼型的失速问题研究具有重要意义。本文通过计算流体力学方法得到的风力机翼型在固定大攻角工况,以及大攻角震荡工况下的非定常流场,来研究翼型静态失速与动态失速。采用本征正交分解方法(POD),对非定常流场降阶,得到流场的POD模态以及对应的系数。POD模态结果表明在静态失速下,主要非定常流动结构是尾迹区域交替脱落的涡结构;在动态失速下,除了尾迹区域,前缘和整个吸力面都存在流动分离结构。  相似文献   

13.
间隙高度对涡轮叶顶间隙流动的影响   总被引:6,自引:0,他引:6  
叶顶间隙流动是导致涡轮动叶中产生流动损失的主要原因之一.对某动力涡轮第一级内三维流动的数值计算结果表明,流体在经过动叶叶顶间隙以后在约25%叶顶轴向弦长处(τ=3mm)在叶顶与吸力边夹角处卷起形成间隙涡,造成流动阻塞,同时在间隙内叶片顶部10%叶顶轴向弦长处(τ=3mm)开始在压力边出现叶顶分离涡,使得间隙流动损失增加.随着间隙高度增大,通过间隙的流量增加,间隙涡形成位置后移,间隙涡、叶顶分离涡尺寸变大,在流道内影响范围增大,导致流动损失变大.  相似文献   

14.
单转子压气机设计状态和近失速状态出口三维紊流流场   总被引:6,自引:0,他引:6  
用单斜丝详细测量了单转子压气机设计状态和近失速状态转子出口的三维素流流场。结果表明,设计状态叶尖泄漏涡和端壁附面层的掺混是造成尖部流动损失、气流阻塞和亲流脉动的主要原因。近失速状态流动三维性和非定常性较强;尖部吸力面角区轴向速度最低、相对动能损失最大;吸力面附面层径向潜移、叶尖吸力面角区低能团周向潜移及其输运的低能物质在尖部通道中部与叶尖泄漏流、泄漏涡、刮削涡发生掺混,造成尖部大范围的高损失区;根部和尖部吸力面阻面层局部发生分离。  相似文献   

15.
轴流压气机转子叶尖泄漏涡和尾迹在静子尖区的传播   总被引:2,自引:0,他引:2  
用三维激光多普勒测速系统测量了轴流压气机设计状态转子叶尖泄漏涡和尾迹在静子尖区的传播过程。结果表明,转子叶尖泄漏涡和转子尾迹周期地扫过静子通道尖区,导致该区出现周期性的流动阻塞和脉动。转子尾迹在静子通道内追赶上从前一转子叶片通道内下来的叶尖泄漏涡,二者的相互作用和掺混导致静子尖区更为复杂的二次流动。同转子尾迹相比,转子叶尖泄漏涡对静子尖区的影响更为明显和深远。静叶尾部吸力面出现流动分离,分离流同低能物质之间发生相互作用和掺混。  相似文献   

16.
在低进口雷诺数下,低速轴流涡轮内部可能存在复杂的边界层转捩和分离流动。准确模拟边界层转捩和流动分离对低速轴流涡轮的气动设计具有重要意义。本文以某单级低速轴流涡轮为研究对象,采用大涡模拟方法对其在进口雷诺数为20000情况下的内部流动进行了数值模拟研究,并与前期采用全层流模型、S-A模型、Abu-GhannamShaw(AGS)转捩模型的模拟结果进行了对比,对比分析发现,大涡模拟结果与实验结果吻合更好,可以准确模拟该涡轮叶片吸力面的流动分离和叶片通道内的二次流动。由大涡模拟结果可以得出,静叶尾迹和分离使尾迹区的流体流动速度降低,但尾迹对流动角的影响较小。动叶入口低速微团在做周向运动的同时沿径向运动;高速微团主要沿周向运动。静叶叶片表面的分离流存在较大的由叶顶向叶根的径向的运动;动叶吸力面叶顶处也存在较大的分离流动.  相似文献   

17.
周向弯曲低压轴流风机叶顶泄漏流动数值研究   总被引:8,自引:0,他引:8  
本文采用数值模拟的方法,对三种带有周向弯曲叶片的低压轴流通风机(原型叶轮、周向前弯及后弯叶轮)的叶顶泄漏流动进行了研究。在数值计算与试验测量结果较为吻合的条件下,从流场和压力场等不同角度分析探讨了叶片周向弯曲后,叶顶泄漏流动和泄漏涡的形成和发展规律。数值计算结果表明,叶顶周向前弯加剧了泄漏涡与主流的掺混;周向后弯叶轮比前弯叶轮有助于减弱叶顶泄漏流动;强度大、衰减慢的泄漏涡,降低了叶顶的通流能力,同时与主流的掺混加剧也增大了叶轮的端部损失;此外,顶部间隙高度的增加,泄漏流动加强,旋涡的起始点更靠近叶片后缘。  相似文献   

18.
间隙大小对高负荷压气机叶栅流动特性的影响   总被引:1,自引:0,他引:1  
在低速平面叶栅风洞中,对不同间隙大小条件下的高负荷压气机叶栅流动特性进行了实验研究。实验采用五孔气动探针测量了叶栅出口截面参数,得到了该截面的二次流速度矢量分布,并对叶栅下端壁和叶片表面进行了墨迹流动显示.结果表明,叶顶间隙的增加加剧了间隙泄漏流动与通道涡的相互作用和掺混,导致叶栅流道内的二次流结构和形态发生改变;增加叶顶间隙可完全抑制吸力面角区分离,但被间隙泄漏流动带走的低能流体被带到尾缘及其下游位置,加剧了相应位置的流动分离;间隙泄漏流动将引起叶栅总损失的显著下降,损失的大小并不一定与间隙大小成正比.  相似文献   

19.
轴流风扇叶片端导叶作用的研究   总被引:2,自引:0,他引:2  
本文采用数值方法研究了叶片端导叶对轴流风扇性能的影响。通过与普通开式轴流风扇比较,分析了叶片端导叶对内部流动作用的机理.数值计算结果表明:叶片端导叶的安装位置将影响轴流风扇气动效率,安装叶片端导叶不能提高风扇静压升,但是在压力面安装时能有效地减小风扇叶顶泄漏流与主流的掺混损失;在设计流量下,压力面安装叶片端导叶使泄漏涡的作用范围较小,涡核更靠近吸力面;吸力面安装叶片端导叶弱化了泄漏涡的强度但没有减小泄漏涡的作用范围。  相似文献   

20.
吸力面小翼对扩压叶栅旋涡结构的影响   总被引:2,自引:0,他引:2  
本文采用经过实验校核的数值模拟方法对某压气机动叶原始叶型和吸力面叶尖小翼叶型流道旋涡结构进行了详细分析.结果表明,原始叶栅流道中存在四个旋涡,即上通道涡、下通道涡、下集中脱落涡和叶顶泄漏涡。吸力面叶尖小翼的应用使得叶栅流道内的旋涡结构发生了变化,叶尖小翼抑制了叶顶泄漏涡的强度,从而使得上集中脱落涡得以出现,同时还使得叶顶泄漏涡的衍生涡被撕裂成两个衍生涡.正是由于叶尖小翼改变了叶栅流道内的旋涡结构,使叶栅流场的气动性能得到了改善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号