首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Quinolinium ionic liquid has been prepared from 1-butylquinolinium bromide as a substrate. The work includes specific basic characterization of synthesized compound by NMR spectra, elementary analysis and water content. The basic thermal properties of the pure IL, i.e. melting and glass-transition temperatures, as well as the enthalpy of fusion have been measured using a differential scanning microcalorimetry technique (DSC). (Solid + liquid) phase equilibria (SLE) and (liquid + liquid) phase equilibria (LLE) for the binary systems: ionic liquid (IL) N-butylquinolinium bis{(trifluoromethyl)sulfonyl}imide, {([BQuin][NTf2]) + aromatic hydrocarbon (benzene, or toluene, or methylbenzene, or propylbenzene, or thiophene), or an alcohol (ethanol, or 1-butanol, or 1-hexanol, or 1-octanol, or 1-dodecanol)} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (260 to 330) K. For the binary systems, the simple eutectic diagrams were observed with immiscibility in the liquid phase with an upper critical solution temperature (UCST). For mixtures with alcohols, it was observed that with increasing chain length of an alcohol the solubility decreases and the UCST increases. In the case of mixture (IL + benzene, or alkylbenzene, or thiophene) the eutectic systems with mutual immiscibility in the liquid phase with very high UCSTs were observed. These points were not detectable with our method and they were observed at low ionic liquid mole fraction. Densities at high temperatures were determined and extrapolated to T = 298.15 K. Well-known UNIQUAC, and NRTL equations have been used to correlate experimental SLE data sets. For the systems containing immiscibility gaps {IL + an alcohol} parameters of the LLE correlation equation have been derived using only the NRTL equation.  相似文献   

3.
4.
The new quinolinium ionic liquid has been synthesised as a continuation of our work with quinolinium-based ionic liquids (ILs). The work includes specific basic characterisation of synthesized compounds: N-hexylquinolinium bromide, [HQuin][Br] and N-hexylquinolinium bis{(trifluoromethyl)sulfonyl}imide [HQuin][NTf2] by NMR spectra, elementary analysis and water content. The basic thermal properties of the pure [HQuin][NTf2] i.e. melting and glass-transition temperatures, the enthalpy of fusion as well as heat capacity have been measured using a differential scanning microcalorimetry technique (DSC) and thermal analysis instrument (TA). Densities and viscosities were determined as a function of temperature. Phase equilibria for the binary systems: {[HQuin][NTf2]) + aromatic hydrocarbon (benzene, or toluene, or ethylbenzene, or n-propylbenzene), or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol)} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (270 to 320) K. For all the binary systems with benzene and alkylbenzenes, the eutectic diagrams were observed with immiscibility gap in the liquid phase beginning from (0.13 to 0.28) mole fraction of the IL with very high an upper critical solution temperature (UCST). For mixtures with alcohols, the complete miscibility was observed for 1-butanol and immiscibility with UCST in the liquid phase for the remaining alcohols. The typical dependence was observed, that with increasing chain length of an alcohol the solubility decreases. The well-known NRTL equation was used to correlate experimental (solid + liquid), SLE and (liquid + liquid), LLE phase equilibria data sets. For the systems containing immiscibility gaps, (IL + an alcohol) parameters of the LLE correlation were used to the prediction of SLE.  相似文献   

5.
Experimental excess molar enthalpies HmE at the temperature 298.15 K and atmospheric pressure in a flow microcalorimeter are reported for the ternary mixtures: {x1CH3OH+x2C2H5OH+(1−x1x2)C5H10O} and {x1CH3OH+x2C2H5OH+(1−x1x2)C4H8O2}. The results have been correlated by means of a polynomial equation and used to construct constant excess enthalpy contours. Further, the results have been compared with those calculated from a UNIQUAC associated-solution model taking into consideration the molecular association of like alcohols, solvation between unlike alcohols and alcohols with oxane (tetrahydropyran) or 1,4-dioxane using only binary information.  相似文献   

6.
The (liquid + liquid) equilibrium (LLE) data for two systems containing heptane, toluene, and 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide ([mpim][Tf2N]) or 1-allyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([amim][Tf2N]) ionic liquids (ILs) were determined at T = 313.2 K and atmospheric pressure. The effect of a double bond in an alkyl side chain in the imidazolium cation was evaluated in terms of selectivity and extractive capacity. The results show a decrease of the amount of toluene and heptane dissolved in the IL with the allyl group. Thus, the distribution ratios of toluene and heptane of [mpim][Tf2N] IL are higher than those of [amim][Tf2N] IL. On the other hand, the separation factor of the [amim][Tf2N] IL increases comparing to [mpim][Tf2N] IL. The NRTL model was used to correlate satisfactorily the experimental LLE data for the two studied ternary systems.  相似文献   

7.
The thermodynamic properties of binary liquid mixtures of (aldehyde + alcohol) are strongly influenced by chemical reactions in particular around and below ambient temperature. In two previous publications the chemical reaction equilibrium was investigated by 13C – Fourier transform NMR-spectroscopy at temperatures between 255 K and 295 K for a series of aldehydes (acetaldehyde, 1-propanal, 1-butanal, 1-heptanal) with three alcohols (methanol, ethanol, 1-propanol). Here these investigations are extended to three more aldehydes (1-decanal, 3-phenylpropanal and 2-chlorobenzaldehyde, respectively). The results for the binary systems with decanal or 3-phenylpropanal as the aldehyde in the binary mixture (aldehyde + alcohol) confirm the expectations from the first parts of this series, i.e., that the majority of the constituents of the mixture is present as hemiacetal and the first two poly(oxymethylene) – hemiacetals. The numerical results for the chemical reaction equilibrium constants from the previous investigations can be used to predict quantitatively the speciation in binary systems of ((either 1-decanal or 3-phenylpropanal) + (either methanol or ethanol or 1-propanol)). However the experimental results with 2-chlorobenzaldehyde reveal a different behaviour. In all investigated systems (2-chlorobenzaldehyde + alcohol) the most important reaction product was the corresponding acetal whereas the amounts of hemiacetal were very small. While the amounts of hemiacteal could still be quantified, it was not possible to quantify the amount of any poly(oxymethylene) – hemiacetal.  相似文献   

8.
9.
Total vapour pressures and excess molar volumes, measured at the temperature 313.15 K, are reported for three binary mixtures (2-pyrrolidone + water), (2-pyrrolidone + methanol) and (2-pyrrolidone + ethanol). The results are compared with previously obtained data for binary mixtures (amide + A), where amide=N-methylformamide, N,N-dimethylformamide and N-methylacetamide, and A= water, methanol, and ethanol.  相似文献   

10.
Liquid–liquid equilibrium (LLE) data were determined for the quaternary systems of {(water + methanol or ethanol) + m-xylene + n-dodecane} at three temperatures 298.15, 303.15 and 313.15 K and atmospheric pressure. The composition of liquid phases at equilibrium was determined by gas–liquid chromatography and the results were correlated with the UNIQUAC and NRTL activity coefficient models. The partition coefficients and the selectivity factor of the solvent are calculated and compared. The phase diagrams for the quaternary systems including both the experimental and correlated tie lines are presented.  相似文献   

11.
The experimental densities for the binary or ternary systems were determined at T = (298.15, 303.15, and 313.15) K. The ionic liquid methyl trioctylammonium bis(trifluoromethylsulfonyl)imide ([MOA]+[Tf2N]) was used for three of the five binary systems studied. The binary systems were ([MOA]+[Tf2N] + 2-propanol or 1-butanol or 2-butanol) and (1-butanol or 2-butanol + ethyl acetate). The ternary systems were {methyl trioctylammonium bis(trifluoromethylsulfonyl)imide + 2-propanol or 1-butanol or 2-butanol + ethyl acetate}. The binary and ternary excess molar volumes for the above systems were calculated from the experimental density values for each temperature. The Redlich–Kister smoothing polynomial was fitted to the binary excess molar volume data. Virial-Based Mixing Rules were used to correlate the binary excess molar volume data. The binary excess molar volume results showed both negative and positive values over the entire composition range for all the temperatures.The ternary excess molar volume data were successfully correlated with the Cibulka equation using the Redlich–Kister binary parameters.  相似文献   

12.
This review covers recent developments in the area of excess molar volumes for mixtures of {ILs (1) + H2O (2)} where ILs refers to ionic liquids involving cations: imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium and ammonium groups; and anions: tetraborate, triflate, hydrogensulphate, methylsulphate, ethylsulphate, thiocyanate, dicyanamide, octanate, acetate, nitrate, chloride, bromide, and iodine. The excess molar volumes of aqueous ILs were found to cover a wide range of values for the different ILs (ranging from −1.7 cm3 · mol−1 to 1.2 cm3 · mol−1). The excess molar volumes increased with increasing temperature for all systems studied in this review. The magnitude and in some cases the sign of the excess molar volumes for all the aqueous ILs mixtures, apart from the ammonium ILs, were very dependent on temperature. This was particularly important in the dilute IL concentration region. It was found that the sign and magnitude of the excess molar volumes of aqueous ILs (for ILs with hydrophobic cations), was more dependent on the nature of the anion than on the cation.  相似文献   

13.
The density, dynamic viscosity, and refractive index of the ternary system (ethanol + water + 1,3-dimethylimidazolium methylsulphate) at T = 298.15 K and of its binary systems 1,3-dimethylimidazolium methylsulphate with ethanol and with water at several temperatures T = (298.15, 313.15, and 328.15) K and at 0.1 MPa have been measured over the whole composition range. From these physical properties, excess molar volumes, viscosity deviations, refractive index deviations, and excess free energy of activation for the binary systems at the above mentioned temperatures, were calculated and fitted to the Redlich–Kister equation to determine the fitting parameters and the root-mean-square deviations. For the ternary system, the excess properties were calculated and fitted to Cibulka, Singh et al., and Nagata and Sakura equations. The ternary excess properties were predicted from binary contributions using geometrical solution models.  相似文献   

14.
15.
The densities of the following: (pentane  +  1-chloropropane, or 1-chlorobutane, or 1-chloropentane, or 1-chlorohexane), (hexane  +  1-chloropropane, or 1-chlorobutane, or 1-chloropentane, or 1-chlorohexane), (heptane  +  1-chloropropane, or 1-chlorobutane, or 1-chloropentane, or 1-chlorohexane), (octane  +  1-chloropropane, or 1-chlorobutane, or 1-chloropentane, or 1-chlorohexane), were measured at T =  298.15 K by means of a vibrating-tube densimeter. The excess molar volumes VmE, calculated from the density data, are negative for (pentane  +  1-chloropentane, or 1-chlorohexane) and (hexane  +  1-chlorohexane) over the entire range of composition. (Pentane  +  1-chlorobutane), (hexane  +  1-chloropentane) and (heptane  +  1-chlorohexane) exhibit an S-shapedVmE dependence. For all the other systems,VmE is positive. The VmEresults were correlated using the fourth-order Redlich–Kister equation, with the maximum likelihood principle being applied for determining the adjustable parameters.  相似文献   

16.
D. Sen  M.G. Kim   《Thermochimica Acta》2008,471(1-2):20-25
The excess molar volumes and excess molar enthalpies over the whole range of composition have been measured for the binary mixtures formed by 1,2-dichloropropane (1,2-DCP) with three 2-alkoxyethanol acetates at 298.15 K and atmospheric pressure using a digital vibrating-tube densimeter and an isothermal calorimeter with flow-mixing cell, respectively. The 2-alkoxyethanol acetates are ethylene glycol monomethyl ether acetate (EGMEA), ethylene glycol monoethyl ether acetate (EGEEA), and ethylene glycol monobutyl ether acetate (EGBEA). The of the mixture has been shown positive for EGMEA, ‘S-shaped’ for EGEEA, being negative at low and positive at high mole fraction of 1,2-DCP, and negative for EGBEA. All the values for the above mixtures showed an exothermic effect (negative values) which increase with increase in carbon number of the 2-alkoxyethanol acetates, showing minimum values varying from −374 J mol−1 (EGMEA) to −428 J mol−1 (EGBEA) around 0.54–0.56 mol fraction of 1,2-DCP. The experimental results of and were fitted to Redlich–Kister equation to correlate the composition dependence of both excess properties. In this work, the experimental excess enthalpy data have been also correlated using thermodynamic models (Wilson, NRTL, and UNIQUAC) and have been qualitatively discussed.  相似文献   

17.
18.
19.
20.
The excess molar volumes and the partial molar volumes for (propionitrile + an alkanol) at T = 298.15 K and at atmospheric pressure are reported. The hydrogen bonding between the OH⋯NC groups are discussed in terms of the chain length of the alkanol. The alkanols studied are (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and 1-pentanol).The excess molar volume data was fitted to the Redlich–Kister equation The partial molar volumes were calculated from the Redlich–Kister coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号