首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents the results of the structural analysis of xNbN–(100-x)SiO2 (x = 100, 80, 60 mol%) thin films by X-ray absorption spectroscopy (XAS). To prepare the films, thermal nitridation of sol–gel derived coatings have been performed. The resulting films have a granular structure with NbN grains distributed in the SiO2 matrix. The size of the grains depends on the NbN/SiO2 molar ratio. A detailed X-ray absorption fine structure (XAFS) data analysis shows that in all the samples both nitrogen and oxygen atoms are present as nearest neighbours of Nb. The intra-granular phase is an ordered NbN phase, whereas the shells around the grains are formed mainly by an oxide phase and, possibly, by other niobium nitride phases (probably with low nitrogen content). Two possible origins of the inter-granular oxide phase were considered: incomplete nitridation of Nb2O5 and addition of SiO2. Both of them are connected with the sample preparation method. The obtained XAS results allowed us to correlate the thickness and stoichiometry of the films under study with the electronic structure of the Nb ions and with the local geometric structure in their environment.  相似文献   

2.
SiO2–B2O3 aerogels have been prepared by drying wet gels at a supercritical condition for ethanol in an autoclave. Aerogels have been nitrided for 6 h in flowing ammonia at the temperature of 1200 °C. It has been found that the amount of nitrogen incorporated in these aerogels always exceeds 20 wt%. This is a much higher value compared with the amount of nitrogen incorporated in a pure silica aerogel nitrided at the same conditions. The specific surface area of SiO2–B2O3 aerogels has been between 312 and 359 m2/g. After nitridation some shrinkage of aerogels has been observed and the surface area decreases about 20%. In FTIR spectra of SiO2–B2O3 aerogels a typical bands for SiO2 are observed. After nitridation a shift and broadening of 1100 cm?1 band to lower wavenumbers indicates that Si–N and B–N bonds are formed in nitrided aerogels.  相似文献   

3.
We prepared SiO2@Ag core–shell nanospheres: silver nanoparticles (~4 ± 2 nm in diameter) coated silica nanospheres (~50 ± 10 nm in diameter). The preparation route is a modification of the Stöber method, and involves the preparation of homogeneous silica spheres at room temperature, combined with the deposition of silver nanoparticles from Ag+ in solution, by using water/ethanol mixtures, tetraethyl-orthosilicate as Si source and silver nitrate as Ag source in a single-pot wet chemical route without an added coupling agent or surface modification, which leads to the formation of core@shell homogeneous nanospheres. We present the preparation and characterization of the SiO2@Ag core–shell nanospheres and also of bare silica spheres in the absence of silver, and propose a reaction mechanism for the formation of the core–shell structure.  相似文献   

4.
40PbO–(10 ? x)PbF2–50 SiO2:xWO3 (where x = 1 to 7 mol%) glasses are prepared in the glass forming region. Spectroscopic studies (UV–Vis absorption, ESR, IR) are carried out for these glasses. Interesting changes are observed in the spectroscopic parameters of these glasses when the concentration of WO3 is changing in the glass matrix. Two absorption bands are observed around at 830 and 620 nm. ESR signal are measured at room temperature for these glasses, the strength of the signal is increased and hyperfine splitting is resolved with increasing the concentration of WO3 in the glass matrix. IR transmission gives valuable information about the nature of bonds in the glass matrix. The physical parameters along with spectroscopic parameters are measured.  相似文献   

5.
Photosensitivity of SiO2–Al and SiO2–Na glass samples was probed by means of the induced optical absorption and luminescence as well as by electron spin-resonance (ESR) after irradiation with excimer-laser photons (ArF, 193 nm). Permanent visible darkening in the case of SiO2–Al and transient, life time about one hour, visible darkening in the case of SiO2–Na was found under irradiation at 290 K. No darkening was observed at 80 K for either kind of material. This investigation is dedicated to revealing the electronic processes responsible for photosensitivity at 290 and 80 K. The photosensitivity of both materials is related to impurity defects excited directly in the case of SiO2–Na and/or by recapture of self-trapped holes, which become mobile at high temperature in the case of SiO2–Al. Electrons remain trapped on the localized states formed by oxygen deficient defects.  相似文献   

6.
The results of a structural study combining NMR and Raman spectroscopy of several melt-derived glasses in the system Na2O–MgO–CaO–P2O5–SiO2 are presented. The Raman spectra show clear changes in the Si–O–Si vibrational modes (related to the bridging oxygen atoms, BO) and also verify the presence of non-bridging oxygen atoms (NBO), also named terminal oxygens. The intensity of the Si–O–NBO stretching mode depends on the cation concentration. It can be concluded from the NMR studies that the MgO-containing samples have orthophosphate units charge-compensated by Ca2+ and Mg2+. The silicate matrix also contains both types of two-valent cations and consists of Q2 and Q1 units. Similarly, the Na2O-containing samples contain isolated orthophosphate units in a silicate matrix (Q2 and Q3 units), both charge-compensated by mixed cations Ca2+ and Na+. These experimental data were compared with theoretical parameters given by the Stevels model, which is a suitable tool for understanding bioactive behavior of these glasses. Furthermore, results of the in vitro tests carried out in simulated body fluids are presented and compared with both Raman and NMR structural data.  相似文献   

7.
B. Kościelska  A. Winiarski  B. Kusz 《Journal of Non》2009,355(24-27):1342-1346
The results of investigations of electrical conductivity and the structure of NbN–TiN thin films in a different NbN/TiN molar ratio are presented in this work. Sol–gel derived xNb2O5?(100?x)TiO2 coatings (where x = 100, 90, 80, 70, 60, 50, 40, 0 mol%) were nitrided at 1200 °C to obtain NbN–TiN films. The structural transformations occurring in the films as a result of ammonolysis were studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The electrical conductivity was measured with a conventional four-terminal method in the temperature range of 5–280 K. The NbN–TiN samples exhibited a negative temperature coefficient of resistivity. The positive temperature coefficient of resistivity was observed only for the x = 0 sample. The results of conductivity versus temperature may be described on the grounds of a model proposed for a weakly disordered system. The film thickness effect on the superconducting properties was studied for x = 80 and x = 100 samples. The superconducting transition was not observed in all samples, the exception was x = 80 sample, 1050 nm in thickness. It is not clear, why all x = 100 samples do not exhibit superconducting transition in resistivity measurements. It seems to be possible, that the Josephson junction formation between NbN grains could be blocked by non-superconducting phases present in these samples.  相似文献   

8.
The effect of the substitution of ZnO for TiO2 on the chemical durability of Bi2O3–SiO2–ZnO–B2O3 glass coatings in hot acidic medium (0.1 N H2SO4 at 80 °C) for different times was studied. The thick films produced by a screen-printing method and heat treated at 700 °C/5 min were analyzed by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The glass from the Bi2O3–SiO2–ZnO–B2O3 system developed Zn2SiO4 and a glassy phase that were readily attacked by hot 0.1 N sulfuric acid, whereas the heat treated coating from the Bi2O3–SiO2–TiO2–ZnO–B2O3 system presented a finer microstructure with thin interconnected Bi4Ti3O12 crystals and a glassy phase more resistant to hot 0.1 N sulfuric acid attack etching.  相似文献   

9.
Amorphous nanoheterogeneities of the size less than 100 Å have been formed in glasses of the Li2O–Nb2O5–SiO2 (LNS) and Li2O–ZnO–Nb2O5–SiO2 (LZNS) systems at the initial stage of phase separation and examined by transmission electron microscopy, small-angle X-ray and neutron scattering. Both LNS and LZNS nanoheterogeneous glasses exhibit second harmonic generation (SHG) even when they are characterized by fully amorphous X-ray diffraction (XRD) patterns. Chemical differentiation and ordering of glass structure during heat treatments at appropriate temperatures higher Tg lead to drastic increase of SHG efficiency of LNS glasses contrary to LZNS ones in the frame of amorphous state of samples. Following heat treatments of nanostructured glasses result in crystallization of ferroelectric LiNbO3 and non-polar LiZnNbO4 in the LNS and LZNS glasses, respectively. Taking into account similar polarizability of atoms in LNS and LZNS glasses, the origin of the principal difference in the second-order optical non-linearity of amorphous LNS and LZNS samples is proposed to connect predominantly with the internal structure of formed nanoheterogeneities and with their polarity. Most probably, amorphous nanoheterogeneities in glasses may be characterized with crystal-like structure of polar (LiNbO3) phase initiating remarkable SHG efficiency or non-polar (LiZnNbO4) phase, which do not initiate SHG activity. It gives an opportunity to vary SHG efficiency of glasses in a wide rage without remarkable change of their transparency by chemical differentiation process at the initial stage of phase separation when growth of nanoheterogeneities is ‘frozen’. At higher temperatures, LiNbO3 crystals identified by XRD precipitate in LNS glasses initiating even more increase of SHG efficiency but visually observable transparency is impaired.  相似文献   

10.
The experiments were carried out on studying the effect of phase separation on nucleation and crystallization in the glass based on the system of CaO–MgO–Al2O3–SiO2–Na2O. In the experiments, TiO2 was chosen as nucleating agent. Three batches of 5, 8 and 10 wt% TiO2 substitution were investigated by the techniques of DSC, XRD, FTIR and FESEM equipped with EDS. XRD and FTIR analysis indicated that the super cooled glasses were all amorphous, the heat treatment leading to nucleation would cause a disruption of silica network which followed phase separation. The phase separation followed the generation of crystal seeds Mg(Ti, Al)2O6. FESEM observation and EDS analysis revealed that the more TiO2 content of glass, the more droplet separated phase and crystal seeds after nucleation heat treatment. The main crystal phase is clinopyroxene, Ca(Ti, Mg, Al)(Al, Si)O6, of crystallized glass.  相似文献   

11.
Li Chen  Chunlei Yu  Dongbing He  Lili Hu  Wei Chen 《Journal of Non》2011,357(11-13):2286-2289
Transparent glass-ceramics were synthesized by heat-treatment of glass with a composition of 5La2O3–13.2MgO–28.8Al2O3–46SiO2–4.5TiO2–2.5ZrO2–0.15CoO (LMAS) (wt.%). The activation energy of crystallization and the Avrami parameter for the LMAS glass were determined from the DTA curves at different heating rates. The most two intense bands of Raman spectrum of initial glass at ~ 810 cm?1 and ~ 900 cm?1 were connected with the presence of [SiO4] and [TiO4] tetrahedral, respectively. After heat-treated at 700 °C/10 h+820 °C/8 h, the intensity of the band for [TiO4] tetrahedral weakened, while an intensive band at ~ 800 cm?1 for the Ti–O bond appeared. Other bands were characteristics of high-silicate network and x(MgTi2O5y(Al2TiO5) polycrystals. The changes reflected phase separation after heat-treatment of the initial glass. The strong absorption band of glass-ceramics centered at 580 nm can be assigned to 4A2(4F)→4T1(4P) and the broad absorption band at 1100–1700 nm to 4A2(4F)→4T1(4F) transitions of tetrahedral coordinated Co2+ ion. Two broad emission bands, one was around 660 nm, the other was from 800 nm to 1050 nm, of glass-ceramics correspond to the 4T1(4P)→4A2(4F) and 4T1(4P)→4T2(4F) transitions of tetrahedral coordinated Co2+ ions. The absorption and emission features clearly demonstrated that Co2+ ions were incorporated into nanocrystals and located in tetrahedral sites.  相似文献   

12.
Li Chen  Chunlei Yu  Lili Hu  Wei Chen 《Journal of Non》2011,357(19-20):3486-3489
Co2+-doped La2O3–MgO–Al2O3–SiO2 (LMAS) glass-ceramics was synthesized by conventional method. The microstructure of LMAS GCs heat-treated at 760 °C/12 h + 930 °C/4 h was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The spectroscopic properties of Co2+-doped LMAS GCs were studied by absorption spectrum, excitation spectrum, and temperature dependent luminescence spectra. XRD results revealed the sizes of MgAl2O4 crystalline phases are about 9.1 ± 1.5 nm. The three peaks in the visible absorption band of LMAS GCs at 549 nm, 585 nm and 626 nm are connected with the transitions from 4A2 level to 2A1/2T2(2G), 4T1(4P) and 2E/2T1(2G) levels, respectively, and excitations into them emit the radiation at around 666 nm. The luminescence intensity increased with temperature increasing from 10 K to 150 K, while it weakened with temperature increasing from 150 K to 350 K. These features were explained by the effects of two competing mechanisms.  相似文献   

13.
The local order around ion-implanted Er3+ ions in SiO2–TiO2–HfO2 thin films prepared by sol–gel, was studied by extended X-ray absorption fine structure at the Er-LIII edge. Both the first and second coordination shells of Er3+ were analyzed for different heat-treatments. While the first coordination shell always consisted of ~6–7 oxygen atoms at distances varying between 2.23 and 2.27 Å, the structure of the second shell was found to vary with the film composition and heat-treatment. Namely, whereas Si was found to be the only second neighbor of erbium in binary SiO2–TiO2 films, the addition of HfO2 caused a preferential replacement of Si by Hf. The post-implantation thermal treatments also played a fundamental role in determining the final environment of the erbium ions.  相似文献   

14.
《Journal of Non》2001,279(2-3):196-203
Positron annihilation lifetime and Doppler broadening of annihilation line techniques have been used to obtain information about the small-pore structure of SiO2 prepared by the alkoxide method in different experimental conditions. Samples prepared in strong acidic environment (pH = 2) contain only small pores with mean radius R∼5 Å, while those prepared at pH = 6 and pH = 9 contain pores of two sizes, R∼5 and R∼17–26 Å. The influence of pH, water/alkoxide molar ratio and temperature of heat-treatment of the samples on their pore structure has been studied.  相似文献   

15.
A series of Li2O–Al2O3–ZrO2–SiO2 glasses doped with different concentrations of WO3 (0 to 5.0 mol.%) have been synthesized. Differential thermal analysis of the samples indicated increasing glass forming ability with the increasing concentration of WO3 in the glass matrix. A variety of spectroscopic (optical absorption, IR, Raman and ESR) and dielectric properties (over a range of frequency and temperature) of these glasses have been investigated. The optical absorption and ESR spectral studies have pointed out that a part of tungsten ions do exist in W5+ state in addition to W6+ state especially in the samples containing low concentration of WO3. The IR and Raman spectral studies have suggested that there is a decreasing degree of disorder in the glass network with increase in the concentration of WO3. The values of dielectric parameters viz., dielectric constant, loss and ac conductivity at any frequency and temperature are observed to decrease as the concentration of WO3 is increased. Such changes have been attributed to decrease of redox ratio or decreasing proportions of W5+ ions that act as modifiers in the glass network. The quantitative analysis of the results of ac conductivity and dielectric properties have indicated an increase in the insulating character of the glasses with the concentration of WO3; this is attributed to the presence of tungsten ions largely in W6+ ions that participate in the glass network forming with WO4 structural units.  相似文献   

16.
《Journal of Non》2003,315(1-2):77-88
The crystallisation of CaO–ZrO2–SiO2 glasses doped with V2O5 (0.1–5 mol%) has been investigated in terms of microstructure and thermal parameters. Results indicate that crystallisation is predominantly controlled by a surface nucleation mechanism, even though a partial bulk nucleation has been encountered in compositions containing more than 2 mol% of doping oxide. As detected from differential thermal analysis curves, glass transition temperature and crystallisation temperature, are strongly dependent upon V2O5 content varying from 0.0 to 2.0 mol%, while the crystallisation activation energy values decrease with a parabolic trend from B-glass (0.0 mol% V2O5 content, 495±7) to V-0.7 (0.7 mol% V2O5 content, 420±6) composition, increasing again to 442±5 kJ/mol K with higher amount of V2O5. The microstructure of the glass-ceramic materials clearly showed a marked dependence upon the amount of V2O5, also due to the presence of phase separation for content higher than 0.7 mol%. Wollastonite, CaO·SiO2, and a calcia–zirconia–silicate, 2CaO·4SiO2·ZrO2, are the main crystalline phases whose ratio slightly varies with vanadium oxide content. The glass ceramics obtained from the studied materials are greenish and bluish coloured, so it is possible to use the studied glasses as coloured frits for tile glazes.  相似文献   

17.
X.L. Duan  Y.C. Wu  F.P. Yu  D.R. Yuan 《Journal of Non》2008,354(40-41):4695-4697
Transparent rare-earth Eu3+-doped ZnO–Ga2O3–SiO2 nano-glass-ceramics were obtained by a sol–gel method. X-ray diffraction and transmission electron microscopy were used to characterize the as-synthesized materials. Results showed that ZnGa2O4 nanocrystals with the size of 5 nm were precipitated from ZnO–Ga2O3–SiO2 system and dispersed in the SiO2-based glass when the heat-treatment temperature was up to 800 °C. Photoluminescence characterization of Eu3+-doped ZnO–Ga2O3–SiO2 nano-glass-ceramics was carried out and the results show that the as-synthesized material display intense emission at 615 nm belonging to 5D0  7F2 transition.  相似文献   

18.
A glass with the composition of 35Na2O–24Fe2O3–20B2O3–20SiO2–1ZnO (mol%) was melted, quenched, using a twin roller technique, and subsequently heat treated in the range 485–750 °C for 1–2 h. This led to the crystallization of magnetite as the sole or the major crystalline phase.Heat treatment at lower temperatures resulted in the crystallization of magnetite crystals 7–20 nm in diameter, whereas heat treatment at higher temperatures produced higher quantities of magnetite and much larger crystals. The room temperature magnetization and coercive force values were in the range of 6–57 emu g? 1 and 0–120 Oe, respectively for the heat treated glasses.  相似文献   

19.
A macroporous nanoscale bulk bioactive glass (SiO2–CaO–P2O5 system) was prepared by sol–gel co-template method. Porosimeter analysis showed that the as-synthesized bioactive glasses (BGs) had a porosity of 85% and exhibited a multimodal pore size distribution, nanopores (10–40 nm) and macropores (100 nm–10 μm). Morphological and structural characterizations showed the pores were interconnected with pore walls of about 250 nm in width and 1 μm in length. In vitro bioactivity test indicated that the as-synthesized bulk BGs exhibited faster apatite layer formation capability than the conventional sol–gel BGs. Additionally, the deposited layer was identified as hydroxycarbonate apatite, which is similar to the inorganic part of human bone.  相似文献   

20.
SiO2–PbO–Bi2O3 glasses having the composition of 35SiO2xPbO–(65 ? x)Bi2O3 (where x = 5, 20 and 45; in mol%) have been prepared using the conventional melting and annealing method. Differential scanning calorimetry (DSC) was employed to characterize the thermal behavior of the prepared glasses in order to determine their crystallization temperatures (Tcr). It has been found that Tcr decreases with the decrease of Bi2O3 content. The amorphous nature of the prepared glasses as well as the crystallinity of the produced glass–ceramics were confirmed by X-ray powder diffraction (XRD) analysis. SiPbBi2O6 glass nano-composites, comprising bismuth oxides nano-crystallites, were obtained by controlled heat-treatment of the glasses at their (Tcr) for 10 h. Transmission electron microscopy (TEM) of the glass nano-crystal composites demonstrates the presence of cubic Bi2O3 nano-crystallites in the SiPbBi2O6 glass matrix. Nano-crystallites mean size has been determined from XRD line width analysis using Scherrer's equation as well as from TEM; and the sizes obtained from both analyses are in good agreement. These sizes varied from about 15 to 170 nm depending on the chemical compositions of parent glasses and, consequently, their structure. Interestingly, replacement of the Bi2O3 by PbO in the glass compositions has pronounced effect on the nature, morphology and size of the formed nano-crystallites. Decrease of the Bi2O3 content increases the size of the nano-crystallites, and at the lowest Bi2O3 extreme, namely 20 mol%, introduces minority of the monoclinic Bi2O4 in addition to the cubic Bi2O3. The crystallization mechanism is suggested to involve a diffusion controlled growth of the bismuth oxide nano-crystallites in the SiPbBi2O6 glass matrix with the zero nucleation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号