首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of optical basicity on Er3+ up-conversion luminescence in germanate glasses is investigated under 980 nm excitation. The intensity of green and red up-conversion luminescence decreased with the increase in radius of alkali ion or Li2O content, implying that up-conversion luminescence strongly relates to the optical basicity of glass host. On the other hand, as increasing the optical basicity, the red emission intensity decreased significantly, while the green emission intensity decreased slightly. It has been proposed that the up-conversion luminescence intensity was dominated by the optical basicity, which theoretically estimated from glass composition. The interaction mechanism between up-conversion process and optical basicity was proposed.  相似文献   

2.
3CaO–Ga2O3–3GeO2 glass excited state absorption spectra-activated with Ho3+ (Ho2O3 – 0.7 wt% content) have been measured and analysed. Up-converted emission channels have been identified and the predicted up-converted emission bands have been registered under Ar ion laser (λ = 488 nm) excitation according to the excited state absorption data. A mechanism of up-converted transitions for Ho3+ centres in this prototype glass network is proposed on the basis of the obtained results.  相似文献   

3.
The effect of Yb3+ concentration on the frequency upconversion (UPC) of Er3+ in PbO–GeO2–Ga2O3 glasses is reported for the first time. Samples were prepared with 0.5 wt% of Er2O3 and different concentrations of Yb2O3 (1.0–5.0 wt%). The green (523 and 545 nm) and red (657 nm) emissions are observed under 980 nm diode laser excitation. The dependence of the frequency UPC emission intensity upon the excitation power was examined and the UPC mechanisms are discussed. An interesting characteristic of these glasses is the increase of the ratio of red to green emission, through an increase of the Yb3+ concentration due to an efficient energy transfer from Yb3+ to Er3+.  相似文献   

4.
5.
The structure of glasses within the system Li2O–Al2O3–B2O3–P2O5 has been studied through 31P, 11B and 27Al Nuclear Magnetic Resonance, and the effect of Al2O3 substitution by B2O3 and P2O5 network formers on the structure and properties investigated for a constant Li2O content. Multinuclear NMR results reveal that substitution of Al2O3 for B2O3 and P2O5 network formers in a glass with composition 50Li2O·15B2O3·35P2O5 produces a change in boron environment from four-fold to three-fold coordination. Meanwhile aluminum can be present in four-, five- and six-fold coordinations a higher amount of Al(IV) groups is found for increasing alumina contents. The behavior of the glass transition temperature and electrical conductivity of the glasses has been interpreted as a function of the structural changes induced in the glass network when alumina is substituted for B2O3, P2O5 or both. Small additions of alumina produce a drastic increase in glass transition temperature, while it does not change for [Al2O3] greater than 3 mol.%. However, the electrical conductivity shows very different behavior depending on the type of substitution; it can remain constant when B2O3 content decreases or sharply decrease when P2O5 is substituted by Al2O3, which is attributed to a higher amount of BO3 and phase separation.  相似文献   

6.
Zhiyong Yang  Botao Li  Fei He  Lan Luo  Wei Chen 《Journal of Non》2008,354(12-13):1198-1200
The Ge25Ga5Sb5Se65 glasses, doped with 0.01, 0.05, 0.1, 0.2, and 0.5 mol% of Dy3+ ions are prepared and the concentration dependence of Dy3+:1.3 μm luminescence is investigated. Remarkable energy migration between Dy3+ ions occurs as its concentration is more than 0.05 mol%. With further increasing amount of Dy3+ ions, the decay time of the 1.3 μm fluorescence decreases rapidly. All the decays are simple exponential and possible regimes of the donor decay are discussed.  相似文献   

7.
A transparent glass with the composition 60B2O3–30Li2O–10Nb2O5 (mol%) was prepared by the melt quenching technique. The glass was heat-treated with and without the application of an external electric field. The as-prepared sample was heat-treated (HT) at 450, 500 and 550 °C and thermoelectric treated (TET) at 500 °C. The following electric fields were used: 50 kV/m and 100 kV/m. Differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman, dc and ac conductivity, as a function of temperature, were used to investigate the glass and glass-ceramics properties. LiNbO3 crystals were detected, by XRD, in the 500 °C HT, 550 °C HT and 500 °C TET samples. The presence of an external electric field, during the heat-treatment process, improves the formation of LiNbO3 nanocrystals at lower temperatures. However, in the 550 °C HT and in the TET samples, Li2B4O7 was also detected. The value of the σdc decreases with the rise of the applied field, during the heat-treatment. This behavior can indicate an increase in the fraction of the LiNbO3 crystallites present in these glass samples. The dc and ac conduction processes show dependence on the number of the ions inserted in the glass as network modifiers.The Raman analysis suggests that the niobium ions are, probably, inserted in the glass matrix as network formers.These results reflect the decisive effect of temperature and electric field applied during the thermoelectric treatment in the structure and electric properties of glass-ceramics.  相似文献   

8.
X.L. Duan  Y.C. Wu  F.P. Yu  D.R. Yuan 《Journal of Non》2008,354(40-41):4695-4697
Transparent rare-earth Eu3+-doped ZnO–Ga2O3–SiO2 nano-glass-ceramics were obtained by a sol–gel method. X-ray diffraction and transmission electron microscopy were used to characterize the as-synthesized materials. Results showed that ZnGa2O4 nanocrystals with the size of 5 nm were precipitated from ZnO–Ga2O3–SiO2 system and dispersed in the SiO2-based glass when the heat-treatment temperature was up to 800 °C. Photoluminescence characterization of Eu3+-doped ZnO–Ga2O3–SiO2 nano-glass-ceramics was carried out and the results show that the as-synthesized material display intense emission at 615 nm belonging to 5D0  7F2 transition.  相似文献   

9.
Glasses with composition xLi2O-(30 ? x)Na2O–10WO3–60B2O3 (where x = 0, 5, 10, 15, 20, 25 and 30 mol%) have been prepared using the melt quenching technique. In the present work, the mixed alkali effect (MAE) has been investigated in the above glass system through density and modulated DSC studies. The density and glass transition temperature of the present gasses varies non-linearly, the exhibiting the mixed alkali effect. From the optical absorption studies, the values of direct optical band gap, indirect optical band gap energy (Eo) and Urbach energy(ΔE) have been evaluated. The values of Eo and ΔE vary non-linearly with composition parameter, showing the mixed alkali effect. The electronic polarizability of oxide ions, optical basicity and the Yamashita–Kurosawa's interaction parameter have been examined to check the correlation among them and bond character. Based on good correlation among electronic polarizability of oxide ions, optical basicity and the Yamashita–Kurosawa's interaction parameter, the present Li2O–Na2O–WO3–B2O3 glasses were classified as normal ionic (basic) oxides.  相似文献   

10.
In an effort to design low-melting, durable, transparent glasses, two series of glasses have been prepared in the NaPO3–ZnO–Nb2O5–Al2O3 system with ZnO/Nb2O5 ratio of 2 and 1. The addition of ZnO and Nb2O5 to the sodium aluminophosphate matrix yields a linear increase of properties such as glass transition temperature, density, refractive index and elastic moduli. The chemical durability is also significantly, but nonlinearly, improved. The glass with the highest niobium concentration, 55NaPO3–20ZnO–20Nb2O5–5Al2O3 was found to have a dissolution rate of 4.5 × 10? 8 g cm? 2 min? 1, comparable to window glass. Structural models of the glasses were developed using Raman spectroscopy and nuclear magnetic resonance spectroscopy, and the models were correlated with the compositional dependence of the properties.  相似文献   

11.
We report silver metal enhanced near-IR and infrared-to-visible upconversion luminescence in Tm3+ doped 70GeS2–10Ga2S3–20CsCl (in mol. %) glasses. The metal embedded glasses are prepared under controlled crystallization. Upon 808 nm excitation three fold enhancement of emissions is observed in the visible (446 nm, 496 nm, and 532 nm) and near infrared (1230 nm, 1450 nm and 1480 nm) regions. The possible mechanism responsible for the enhanced luminescence is discussed.  相似文献   

12.
《Journal of Non》1997,210(1):95-100
Bi particles of different sizes were produced in Na2O–B2O3 glasses by melt quenching and heat treatment technique. Melting temperature of Bi particles was measured by differential scanning calorimetry and X-ray diffraction. Measured melting temperatures of Bi particles are lower than bulk Bi melting temperature. Results of transmission electron microscopy were analyzed for the dependence of melting temperature on particle radius. The pressure and surface energy effect on melting temperature is estimated. The melting behavior of Bi particles in Na2O–B2O3 glasses depends on the difference in the interfacial energies between the solid particle/glass and liquid particle/glass, and liquid particle/glass, σsmσlm, which is estimated to be 255×10−3 J m−2.  相似文献   

13.
The structural role, coordination geometry and valence of Fe in a series of Fe2O3–PbO–SiO2–Na2O glasses are studied by means of Fe-K-NEXAFS and EXAFS spectroscopies. Parameters for the study are the concentration of the Fe and Pb-oxides, the SiO2/Na2O ratio and the cast temperature. The EXAFS and NEXAFS results reveal that the role of Fe3+ depends on the concentration of Fe2O3. More specifically, in most of the studied quaternary systems, the Fe3+ ion is a glass former, i.e. the Fe atoms belong to FeO4 tetrahedra that participate in the formation of the glassy network. The role of Fe as an intermediate oxide is identified only in one sample with 20 wt% Fe2O3, where ~80 at.% of the Fe atoms are tetrahedrally coordinated with O atoms, while the remaining ~20 at.% of the Fe atoms occupy octahedral sites. It is also revealed that the tetrahedral coordination of Fe in the vitreous matrix is destroyed when a number of parameters is altered, such as the Tcast, the (Fe + Si)/O and the SiO2/Na2O ratio.  相似文献   

14.
Z.G. Ivanova  J. Zavadil  K.S.R.K. Rao 《Journal of Non》2011,357(11-13):2443-2446
The influence of temperature and glass composition on the photoluminescence (PL) efficiency of Er3+ ions embedded in (GeS2)100?x(Ga2S3)x (x = 20, 25 and 33 mol%) glasses has been studied. The typical 4f–4f emission bands of Er3+ ions at around 830, 1000 and 1550 nm have been observed in the whole investigated temperature range from 300 K down to 10 K for all the compositions. New 4f–4f luminescence bands, in excess of the three basic ones, have been observed at 670, 870, 1120, 1260 and 1350 nm for (GeS2)75(Ga2S3)25 glass composition, and are tentatively assigned to 2H9/2  4I11/2, 4G11/2  4F9/2, 2H11/2  4I11/2, 4F7/2  4I9/2 and 4F3/2  4I9/2 transitions, respectively. Thus a considerable influence of GeGaS host composition on the efficiency of 4f–4f transitions of embedded Er3+ ions is documented with the outcome that (GeS2)75Ga2S3)25 composition appears near optimal for the emission efficiency of Er3+ ions. With decreasing temperature the PL efficiency is enhanced considerably with pronounced narrowing of all bands. In the case of the strongest PL band at ~ 1550 nm, corresponding to 4I13/2  4I15/2 transition, the narrowing at low temperature is further accompanied by the resolution of well pronounced fine structure due to “crystal field” splitting of corresponding electronic terms. The relationship between the photoluminescence and reflectance spectra as a function of Er content has been discussed.  相似文献   

15.
16.
The electric properties of LiI containing chalcohalide glasses in the system Ga2S3–GeS2 were studied by means of impedance spectroscopy and potentiostatic chronoamperometry. Two sets of the samples were prepared by direct synthesis from elements and compounds in evacuated quartz ampoules. The prepared glasses were as follows: xLiI–xGa2S3–(100?2x)GeS2, x = 15, 20, 25 and 20LiI–xGa2S3–(80?x)GeS2, x = 0, 5, 10, 15 and 20. In the first set the concentration of LiI increased and the second set was prepared to study the influence of Ga2S3 on the properties of the glasses. Additional aim of this work was to compare the electric properties of LiI containing Ga2S3–GeS2 glasses with analogous AgI containing Ga2S3–GeS2 glasses recently studied by us. The conductivity of the LiI containing glasses in the Ga2S3–GeS2 system was higher and the activation energy was lower than in the analogous AgI containing system. The residual electronic (hole) conductivity remained similar in both systems being almost negligibly low. Raman spectroscopy proved the influence of LiI as well as Ga2S3 on glass structure, however interpretation of Raman spectra of these glasses is complicated due to small mass difference between gallium and germanium.  相似文献   

17.
S. Rada  A. Dehelean  E. Culea 《Journal of Non》2011,357(16-17):3070-3073
Glasses in the xEu2O3·(100-x)[4TeO2·PbO2] system where 0  x  50 mol% have been prepared using the melt quenching method. The influence of europium ions on the structure of lead–tellurate glasses has been investigated using density measurements, FTIR and UV–VIS spectroscopy. Structural changes produced by increasing the rare earth concentration were followed.The europium and lead ions show a preference towards [TeO3] structural units causing a deformation of the TeOTe linkages. Structural changes inferred by analyzing the band shapes of IR spectra revealed that the increase of the Eu+ 3 content causes the intercalation of [EuOn] entities in the [TeO4] chain network. The excess of oxygen can be supported into the glass network by the formation of [PbOn] and [EuOn] structural units.The UV–VIS spectroscopy data show that europium ions enter the glass matrix in the Eu2+ and Eu3+ valence states, the last being predominant in the studied glasses. The Pb+ 2 ions produce strong absorption in the ultraviolet domain.  相似文献   

18.
《Journal of Non》2003,315(1-2):1-6
New fluoride glasses were developed in the SnF2–PbF2–ZnF2 system. Additions of 5 mol% of CsCl or 6–15 mol% of AlF3 were found to stabilize the glass formation. The IR absorption of the glasses and the optical properties of the europium ions doped in the glasses were compared with those of a fluorozirconate glass as a representative fluoride glass. The IR spectra showed that the new glasses have the peak of the phonon energy at 400 cm−1, which is about 100 cm−1 lower than that of the fluorozirconate glass. The results of the fluorescence measurement of the europium ions revealed that the multi-phonon relaxation rate in these glasses is smaller than that in the fluorozirconate glass.  相似文献   

19.
《Journal of Non》1986,81(3):337-350
Glass-forming tendencies of melts in the systems (alkali oxide or alkaline earth oxide)-Nb2O5Ga2O3 were examined by an ordinary crucible-melting technique. The glass-forming tendency increased with increasing radius of alkali or alkaline earth ion in the respective groups. Clear glasses were obtained on a practically useful scale in the systems (K2O or Cs2O)Nb2O5Ga2O3 and (SrO or BaO)Nb2O5Ga2O3. The infrared absorption spectra indicated that the Ga3+ ions in the glasses are tetrahedrally coordinated with oxygen ions. The glasses showed high optical transmissions from the ultraviolet region of 0.3 μm in wavelength to the infrared region of 7 μm, except for a region near 3 μm. The absorption near 3 μm, which is attributed to OH vibration, could be eliminated by replacing part of the carbonate in the raw materials with a fluoride and melting the mixture of raw materials in a dry N2 gas atmosphere. The glass-forming tendencies of the melts and the optical transmissions of the glasses were discussed in terms of the glass structure.  相似文献   

20.
A glass with the composition of 35Na2O–24Fe2O3–20B2O3–20SiO2–1ZnO (mol%) was melted, quenched, using a twin roller technique, and subsequently heat treated in the range 485–750 °C for 1–2 h. This led to the crystallization of magnetite as the sole or the major crystalline phase.Heat treatment at lower temperatures resulted in the crystallization of magnetite crystals 7–20 nm in diameter, whereas heat treatment at higher temperatures produced higher quantities of magnetite and much larger crystals. The room temperature magnetization and coercive force values were in the range of 6–57 emu g? 1 and 0–120 Oe, respectively for the heat treated glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号