首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A surface wave of frequency lying within bulk band of transverse waves is found in an elastic medium coated with a thin layer endowed with a surface mass density, surface Young's modulus and surface bending modulus. The wave is a particular case of surface resonance with infinite lifetime. In materials with negative Poisson's ratio (auxetics) the wave exists even for coating material with zero bending modulus, whereas with positive Poisson's ratio it requires the surface bending modulus to be larger than the surface Young's modulus. The manifestation of this wave in the reflection coefficient seems promising for fabrication of devices showing monochromator properties.  相似文献   

2.
The elastic properties of oxyfluoride tellurite glasses in the ternary system ZnF2-WO3 -TeO2 were analyzed and their changes when ZnF2 was replaced with TeO2 or WO3 were predicted. The most significant structural and compositional parameters were evaluated on the basis of the well known models and approaches existing in the field and correlated with both elastic moduli and Poisson's ratio. It has been found that the molar volume, fractal bond connectivity, first-order stretching force constant of the Te–O and W–O covalent bonds and dissociation energy per unit volume of the constituent components play an important role in determining and predicting of elastic moduli. The semi-empirical formula of Abd El-Moneim and Alfifi, which correlates bulk modulus with the ratio between packing density and mean atomic volume, appears to be valid for the investigated oxyfluoride tellurite glasses. On the basis of Makishima-Mackenzie's theory, the agreement between the theoretically calculated and experimentally measured values is excellent for shear and Young's moduli and satisfactory for Poisson's ratio as well as bulk and longitudinal moduli. The slight divergence between the theoretical and experimental values was interpreted in terms of the basic structural units that constituting the glass network.  相似文献   

3.
We present first-principle calculations on the structural, elastic, and high-pressure properties of rubidium halides compounds, using the pseudo-potential plane-waves approach based on density functional theory, within the generalized gradient approximation. Results are given for lattice constant, bulk modulus and its pressure derivative. The pressure transition at which these compounds undergo structural phase transition from NaCl-type to CsCl-type structure are calculated and compared with previous calculations and available experimental data. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus and Poisson's ratio for ideal polycrystalline RbF, RbCl, RbBr, and RbI aggregates. We estimated the Debye temperature of these compounds from the average sound velocity.  相似文献   

4.
In the open literature, reports of mechanical properties are limited for semiconducting thermoelectric materials, including the temperature dependence of elastic moduli. In this study, for both cast ingots and hot-pressed billets of Ag-, Sb-, Sn- and S-doped PbTe thermoelectric materials, resonant ultrasound spectroscopy (RUS) was utilized to determine the temperature dependence of elastic moduli, including Young's modulus, shear modulus and Poisson's ratio. This study is the first to determine the temperature-dependent elastic moduli for these PbTe-based thermoelectrics, and among the few determinations of elasticity of any thermoelectric material for temperatures above 300 K. The Young's modulus and Poisson's ratio, measured from room temperature to 773 K during heating and cooling, agreed well. Also, the observed Young's modulus, E, versus temperature, T, relationship, E(T) = E 0(1–bT), is consistent with predictions for materials in the range well above the Debye temperature. A nanoindentation study of Young's modulus on the specimen faces showed that both the cast and hot-pressed specimens were approximately elastically isotropic.  相似文献   

5.
马振洋  阎芳  王苏鑫  贾琼琼  于新海  史春蕾 《中国物理 B》2017,26(12):126105-126105
The structural,mechanical,elastic anisotropic,and electronic properties of the monoclinic phase of m-Si_3N_4,mSi_2GeN_4,m-SiGe_2N_4,and m-Ge_3N_4are systematically investigated in this work.The calculated results of lattice parameters,elastic constants and elastic moduli of m-Si_3N_4and m-Ge_3N_4are in good agreement with previous theoretical results.Using the Voigt–Reuss–Hill method,elastic properties such as bulk modulus B and shear modulus G are investigated.The calculated ratio of B/G and Poisson’s ratio v show that only m-SiGe_2N_4should belong to a ductile material in nature.In addition,m-SiGe_2N_4possesses the largest anisotropic shear modulus,Young’s modulus,Poisson’s ratio,and percentage of elastic anisotropies for bulk modulus ABand shear modulus AG,and universal anisotropic index AUamong m-Si_xGe_(3-x)N_4(x=0,1,2,3.)The results of electronic band gap reveal that m-Si_3N_4,m-Si_2GeN_4,m-SiGe_2N_4,and m-Ge_3N_4 are all direct and wide band gap semiconducting materials.  相似文献   

6.
The structural, mechanical, electronic and optical properties of orthorhombic PtSi and PtGe were investigated using norm-conserving pseudopotentials within the local density approximation in the frame of density functional theory. The calculated lattice parameters and bulk modulus for PtSi and PtGe have been compared with the experimental and theoretical values. The second-order elastic constants were calculated, and the other related quantities such as the Young's modulus, shear modulus, Poisson's ratio, anisotropy factor, sound velocities and Debye temperature have also been estimated. The linear photon-energy dependent dielectric functions and some optical properties such as the energy-loss function, the effective number of valance electrons and the effective optical dielectric constant were calculated. Our structural estimation and some other results are in agreement with the available experimental and theoretical data.  相似文献   

7.
In this paper, the elastic band structures of two-dimensional solid phononic crystals (PCs) with both negative and positive Poisson's ratios are investigated based on the finite difference domain method. Systems with different combinations of mass density ratio and shear modulus ratio, filling fractions and lattices are considered. The numerical results show that for the PCs with both large mass density ratio and shear modulus ratio, the first bandgap becomes narrower with its upper edge becoming lower as Poisson's ratio of the scatterers decreases from −0.1 to −0.9. Generally, introducing the material with a negative Poisson's ratio for scatterers will make this bandgap lower and narrower. For the PCs with large mass density ratio and small shear modulus ratio, the first bandgap becomes wider with Poisson's ratio of the scatterers decreasing and that of the host increasing. It is easy to obtain a wide low-frequency bandgap by embedding scatterers with a negative Poisson's ratio into the host with a positive Poisson's ratio. The PCs with large filling fractions are more sensitive to the variations of Poisson's ratios. Use of negative Poisson's ratio provides us a way of tuning bandgaps.  相似文献   

8.
《Ultrasonics》2005,43(2):87-93
Surface Brillouin spectroscopy (SBS) has been widely used for elastic property characterization of thin films. For films thicker than 500 nm, however, the wavelength of surface acoustic wave in the frequency range available for SBS is smaller than film thickness, and the SBS measures only the Rayleigh wave of the film. The laser-SAW technique, on the other hand, measures only the low-frequency portion of the surface acoustic wave dispersion and can estimate only one elastic modulus of the film (typically Young's modulus). In this work, we have combined the two methods to determine both Young's modulus and Poisson's ratio of a diamond-like carbon (DLC) film. It was found that reasonable estimates can be obtained for the longitudinal wave velocity, shear wave velocity, and Young's modulus of the film. The Poisson's ratio, however, still has a relatively large measurement error.  相似文献   

9.
In order to obtain a deeper understanding of the human phonation process and the mechanisms generating sound, realistic setups are built up containing artificial vocal folds. Usually, these vocal folds consist of viscoelastic materials (e.g., polyurethane mixtures). Reliable simulation based studies on the setups require the mechanical properties of the utilized viscoelastic materials. The aim of this work is the identification of mechanical material parameters (Young's modulus, Poisson's ratio, and loss factor) for those materials. Therefore, we suggest a low-cost measurement setup, the so-called vibration transmission analyzer (VTA) enabling to analyze the transfer behavior of viscoelastic materials for propagating mechanical waves. With the aid of a mathematical Inverse Method, the material parameters are adjusted in a convenient way so that the simulation results coincide with the measurement results for the transfer behavior. Contrary to other works, we determine frequency dependent functions for the mechanical properties characterizing the viscoelastic material in the frequency range of human speech (100–250 Hz). The results for three different materials clearly show that the Poisson's ratio is close to 0.5 and that the Young's modulus increases with higher frequencies. For a frequency of 400 Hz, the Young's modulus of the investigated viscoelastic materials is approximately 80% higher than for the static case (0 Hz). We verify the identified mechanical properties with experiments on fabricated vocal fold models. Thereby, only small deviations between measurements and simulations occur.  相似文献   

10.
Bismuth-borate glasses doped with some rare earth ions were studied with respect to the density, molar volume and the elastic moduli, Poisson’s ratio, Debye temperature, microhardness, softening temperature, acoustic impedance, diffusion constant and latent heat of melting. Ultrasonic velocities were measured by the pulse echo overlap technique at a frequency of 10 MHz and at room temperature. From these velocities and density values, various elastic moduli were calculated. The correlation of elastic stiffness, the cross link density, and the fractal bond connectivity of these glasses are discussed. The derived experimental values of shear modulus, bulk modulus, Young’s modulus, and Poisson’s ratio for our glasses are compared with the theoretically calculated values in terms of the bond compression model and Makishima-Mackenize theory.  相似文献   

11.
Pressure-induced structural aspects and elastic properties of NaCl-type (B1) to CsCl-type (B2) structure in praseodymium chalcogenides and pnictides are presented. Ground-state properties are numerically computed by considering long-range Coulomb interactions, Hafemeister and Flygare type short-range overlap repulsion, and van der Waals interaction in the interionic potential. From the elastic constants, Poisson's ratio ν, the ratio RG/B of G (shear modulus) over B (bulk modulus), anisotropy parameter, shear and Young's moduli, Lamé's constant, Kleinman parameter, elastic wave velocity and thermodynamical property such as Debye temperature are calculated. Poisson's ratio ν and the ratio RG/B indicate that PrX and PrY are brittle in B1 phase and ductile in B2 phase. To our knowledge, this is the first quantitative theoretical prediction of the ductile (brittle) nature of praseodymium chalcogenides and pnictides and still awaits experimental confirmation.  相似文献   

12.
The results are presented of first-principles calculations of the structural, elastic and lattice dynamical properties of GdX (X = Bi, Sb). In particular, the lattice parameters, bulk modulus, phonon dispersion curves, elastic constants and their related quantities, such as Young's modulus, Shear modulus, Zener anisotropy factor, Poisson's ratio, Kleinman parameter, and longitudinal, transverse and average sound velocities, were calculated and compared with available experimental and other theoretical data. The temperature and pressure variations of the volume, bulk modulus, thermal expansion coefficient, heat capacities, Grüneisen parameter and Debye temperatures were predicted in wide pressure (0?50 GPa) and temperature ranges (0–500 K). The plane-wave pseudopotential approach to the density-functional theory within the GGA approximation implemented in VASP (Vienna ab initio simulation package) was used in all computations.  相似文献   

13.
The structural, electronic, elastic, mechanical and thermal properties of Ti3Au, Ti3Pt and Ti3Ir intermetallic compounds crystallizing in A15 structure have been studied using density functional theory within generalized gradient approximation (GGA) for the exchange correlation potential. Elastic properties such as Young's modulus (E), rigidity modulus (G), bulk modulus (B), Poisson's ratio (σ) and elastic anisotropic factor (A) have been calculated. From the present study it is noted that Ti3Ir is the hardest compound among the three materials studied due to its larger bulk modulus. Also, it is more ductile in nature.  相似文献   

14.
The structural, elastic and electronic properties of Ti2SiN were studied by first-principle calculations. The calculated bond lengths of Ti-Si and Ti-C are 2.65 and 2.09 Å, respectively. The results show Ti2SiN is mechanically stable, and its bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio μ and anisotropy factor A are determined to be 182 GPa, 118 GPa, 291 GPa, 0.233 and 1.57, respectively. The calculated electronic structure indicates that Ti2SiN is anisotropic and conductive.  相似文献   

15.
Electronic structure and mechanical properties of cubic crystallographic structures with point defects in Al-based alloys are investigated using the first-principles calculations. Equilibrium structural parameters and mechanical parameters such as bulk modulus, shear modulus, Young's modulus, Poisson's ratio and anisotropy are calculated and agreed well with experimental values. Effects of point defects on the electronic structures and mechanical properties of such cubic phases are further analyzed and discussed in view of the charge density and the density of states.  相似文献   

16.
Structural properties of magnesium in the hcp structure are calculated using the ab initio pseudopotential method within the local-density-functional formalism. The calculated lattice constants, cohesive energy, bulk modulus, and Poisson's ratio are in good agreement with experimental values. A comparison with the results of beryllium is also discussed.  相似文献   

17.
Using the first-principles density-functional theory within the generalized gradient approximation (GGA), we have investigated the structural, elastic, mechanical, electronic, and optical properties and phase transition of CuInO2. Structural parameters including lattice constants and internal parameter, pressure effects and phase transition pressure were calculated. We have obtained the elastic coefficients, bulk modulus, shear modulus, Young's modulus and Poisson's ratio. We find that two phases of CuInO2 are indirect band gap semiconductors (F–Γ and H–Γ for 3R and 2H, respectively). Optical properties, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function and optical conductivity have been obtained for radiations of up to 30 eV.  相似文献   

18.
The driving point impedance method, as described theoretically by Snowdon [1], for measuring the complex modulus of elasticity of a beam has been implemented experimentally, with use of a vibrational impedance head. The influence of the transmission function of the impedance head as well as of the mass impedance of the element connecting the beam and the head on the measured results for the complex moduli of elasticity of viscoelastic beams has been examined theoretically and experimentally. Values of the loss factor and Young's modulus have been determined at resonance and antiresonance modes of a Plexiglass beam over the frequency range 40–7000 Hz.  相似文献   

19.
The structural and lattice dynamical properties of TmX (X=As, P) compounds were investigated using normconserving pseudopotentials within the generalized gradient approximation correction (GGA) of Perdew–Burke–Ernzerhof (PBE) in the framework of density functional theory (DFT). The structural parameters (a0, B, B′, Ecoh) were determined through total energy and interatomic force minimization and the overall agreement was found to be good. The pressure dependence of the ratios of normalized lattice parameters a/a0, normalized volume V/V0, bulk modulus, elastic constants, Zener anisotropy factor, Poisson's ratio, Young's modulus, shear modulus, and the brittleness were presented and discussed. The thermodynamical properties such as thermal expansion, heat capacity, Debye temperature, and Grüneisen parameter were calculated employing the quasi-harmonic Debye model at different temperatures (0–1000 K) and pressures (0–30 GPa). The phonon dispersion curves and corresponding density of states (DOS) of TmX (X=As, P) were also obtained, and the salient results were interpreted.  相似文献   

20.
Elastic constants and bulk modulus for the tetragonal, rhombohedral, and cubic phase of Na0.5Bi0.5TiO3 crystal were calculated from the first principles. From the calculated elastic constants, other structural properties such as bulk modulus, shear modulus, Young's modulus, and Poisson's ratio can be derived using respective relationships from Voight–Reuss–Hill approximation; bulk modulus was calculated as an example in this article. It was shown that elastic constants show different behavior for compression and elongation. The different values of elastic constants have been calculated for the direction parallel to the bismuth layer (crystallographic a(b)-axis) and the perpendicular direction (crystallographic c-axis). It seems to be caused by bismuth layer structure oxides of Na0.5Bi0.5TiO3 crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号