首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a cryogenic cell and a series of Distributed Feed Back (DFB) diode lasers, new high resolution spectra of methane have been recorded at 80 K and room temperature by differential absorption spectroscopy (DAS) between 6717 and 7589 cm?1 (1.49–1.32 μm). The investigated spectral region corresponds to the very congested icosad, which is not tractable by theory. Empirical lists of 19,940 and 24,001 lines were constructed from the 80 K and room temperature spectrum, respectively. The room temperature list adds about 8500 features to the empirical list of 15,375 lines at 296 K adopted in the HITRAN database from the original work of L. Brown (Brown, L. Empirical line parameters of methane from 1.1 to 2.1 μm. JQSRT 2005;96:251–70). A number of relatively strong CH4 lines located near strong water lines were found missing in the HITRAN line list. The improved sensitivity allowed adding more than 7000 lines to our previous list of about 12,000 transitions at 80 K (Campargue A, Wang L, Kassi S, Ma?át M, Votava O. Temperature dependence of the absorption spectrum of CH4 by high resolution spectroscopy at 81 K: (II) The Icosad region (1.49–1.30 μm). JQSRT 2010;111:1141–51). In order to facilitate identification of the transitions of the different methane isotopologues present in “natural” isotopic abundance, spectra of highly enriched CH3D and 13CH4 samples were recorded with the same experimental setup, both at room temperature and at 80 K.From the variation of the line strengths between 80 K and 294 K, the low energy values of about 12,000 transitions were determined. They allow accounting for the temperature dependence of 84 and 93% of the methane absorbance in the region, at room temperature and 80 K, respectively. As a result, we provide as supplementary material two complete line lists at 80 K and 294 K, including CH3D and 13CH4 identification and lower state energy values.  相似文献   

2.
The integrated intensities, self- and air-broadening coefficients of thirteen transitions of H216O in the 11980–12260 cm?1 region, belonging to the 2ν1+ν2+ν3 band, were measured. Using a tunable diode laser system, spectra were recorded at room temperature for a wide range of pressure (2–15 Torr for pure H2O and 50–760 Torr for H2O in air). Line parameters were adjusted from experiments using three line-shape models: the Voigt profile (VP), the (hard collision) Rautian profile (RP) and the speed dependent Voigt profile (SDVP). The results show that the RP and SDVP are in better agreement with measurements than the VP and that they lead to larger values of the line parameters (about 5% for the line broadening, and 0.8% for the line intensity). Comparisons of the present results with HITRAN 2008 [Rothman et al., JQSRT 2009, 110:533-72] show that the HITRAN intensities of the studied lines are overestimated by about 9.4%, suggesting a more complete study of the H2O line parameters in the considered region. The Dicke narrowing and speed dependence parameters deduced from this work are also presented and discussed, demonstrating the need for a more refined line-shape model.  相似文献   

3.
Following our recent study devoted to measurements of intensities of pure rotation lines of methane, room temperature far infrared spectra of methane diluted in nitrogen at five total pressures between 100 and 800 hPa have been recorded at the AILES beamline of the SOLEIL synchrotron. One hundred and five N2 broadening coefficients of methane pure rotation lines have been measured in the 83–261 cm?1 spectral range using multi-spectrum non-linear least squares fitting of Voigt profiles. Pressure-induced line shifts were not needed to fit the spectra to the noise level and line mixing effects were neglected. One hundred and seventy-six self broadening coefficients have also been measured in the 59–288 cm?1 spectral range using the pure methane spectra recorded in our previous work. The measured N2 broadening coefficients were compared to semi-classical calculations.  相似文献   

4.
Intensities of about 320 lines of the 12C2H2 molecule, belonging to 7 parallel bands, are measured in the 1.3, 1.2, and 1 μm spectral regions, with a mean accuracy around 3% or 7% depending on the spectral region. Vibrational transition dipole moment squared values and Herman-Wallis coefficients are obtained for each band, in order to model the rotational dependence of the transition dipole moment squared, except for the ν1+ν3+2ν40 band at 7732.78 cm?1 that exhibits an unusual rotational dependence because of a strong ?-type resonance. HITRAN format line lists are set up for applications.  相似文献   

5.
A complete spectroscopic study of 15 strong ozone lines in the 1132.5–1134.5 cm?1 spectral range has been undertaken in the framework of the development of the stratospheric wind interferometer for transport studies (SWIFT), led by the Canadian Space Agency. Measurements have been performed with an interferometrically stabilized tunable diode laser spectrometer. Absolute line positions and intensities have been determined with high accuracy (4×10?5 cm?1 and 1–2% respectively). Self- and air-broadening coefficients at 296 K have been obtained with an accuracy of 1%. The air-shifting coefficient and its temperature dependence have also been measured for unblended lines together with the temperature dependence of the air-broadening. Line intensities have been calibrated by simultaneously performed UV absorption measurements at 253.7 nm. Our IR/UV comparison supports a previously reported inconsistency between recommended IR intensities (HITRAN08) and UV absorption cross-sections and indicates that current IR intensities are too small by ~3%.  相似文献   

6.
In this work the millimeter-wave (MMW) and far infrared (FIR) absorption spectrum for the asymmetrically deuterated Methanol (CH2DOH) species measured recently at a temperature of −60 °C with better accuracy and signal/noise (S/N) ratio than known before has been assigned for transitions originating at the lowest lying trans- to gauche-states. The entire spectrum for 50–1200 cm−1 has been re-recorded recently using the Synchrotron Radiation Source coupled with the Bruker Fourier Transform Infrared (FTIR) spectrometer with a resolution of about 0.001 cm−1 or better. Complete spectrum has not been exploited a great deal but it helped to entangle overlapping lines in the present work. This also fills the gap remaining in the usual FTIR in the range 400–500 cm−1. Hence it is expected to help the interacting partner for the Coriolis interaction encountered earlier. The assigned transitions mostly for the axial rotational angular momentum quantum number K + 1  K, both for R- and Q-sub bands for wide range of rotational angular momentum quantum number. The MMW spectrum has been recalibrated and assigned for a number of Q-branches. The assignments are confirmed rigorously using closed loop residual technique. The assigned rR and rQ lines have been analyzed in terms of polynomial expansion parameters. The new assignments are presented for about 750 transitions and a grand atlas of more than 1000 lines has been prepared which will be made available through the open source server at “research gate”. The present work should be useful in the area of astrophysical detection and further understanding of the energy relaxation pathways in the molecule.  相似文献   

7.
The absorption spectrum of water vapor in “natural” isotopic abundance has been recorded by high sensitivity CW-Cavity Ring Down Spectroscopy (CW-CRDS) between 6885.79 and 7405.91 cm?1. This strong absorbing region includes the first hexad of interacting vibrational bands which was previously studied by Fourier Transform Spectroscopy. The achieved sensitivity of the recordings varies from αmin~2×10–11 to 2×10?10 cm?1 allowing us to use a sample pressure of 0.1 Torr, making pressure broadening of the line profile mostly negligible. Weak lines in the vicinity of much stronger lines could then be accurately measured. The weakest lines have intensity on the order of 5×10–28 cm/molecule at 296 K. A set of 4471 lines were assigned to 4916 transitions of five water isotopologues (H2 16O, H2 18O, H2 17O, HD16O and HD18O). A small number of new energy levels was determined mostly for the H2 17O isotopologue. The previous investigations and existing databases are critically evaluated. In particular, a number of corrections and new assignments are proposed for the water list provided by the HITRAN database in the considered region. As a result, a complete list of 12,700 transitions for water in “natural” isotopic abundance is provided as Supplementary Material for the 6885–7408 cm?1 region.  相似文献   

8.
The spectra of water vapor enriched by 18O were recorded in the 1000–2300 cm?1 spectral range, which corresponds to the spectral region studied by IASI instrument (Infrared Atmospheric Sounding Spectrometer) instrument. The spectra were recorded by a step by step Fourier Transform Spectrometer (FTS) at room temperature with absorption path lengths up to 36 m. Positions, intensities and self broadening coefficients of about 1800 lines of H218O and 900 of HD18O were analyzed and all the transitions were assigned. This paper focuses on lines intensities and comparisons with data from literature are presented. An average difference of 10% with HITRAN2008 database H218O line intensities is found with a maximum discrepancy of about 25% for the ν1ν2 band.  相似文献   

9.
This paper reports laboratory measurements of the spectrum of the most abundant transition Fe ions in the universe. Spectrum of iron of low-lying excited states has been observed in the wavelength range 250–400 Å at Chinese Institute of Atomic Energy on the HI-13 tandem accelerator with beams of 130 MeV. A number of spectral lines have been mainly classified as transitions of magnesium-, sodium-, neon-, fluorine-like ions. A total of 54 lines have been measured. Most of them have been mainly ascribed to 3s3pk–3pk+1, 3s23pk–3s3pk+1, 2p53s–2p53p, 3s3d–3p3d and 2p53p–2p53d resonance transitions. These spectral lines have been identified, among which 21 are new and accurately measured. The analysis of the spectra was based on a comparison with other experimental results and calculated values.  相似文献   

10.
The oxygen tracer diffusion coefficient (D?) has been measured for 9 mol% scandia 2 mol% yttria co-doped zirconia solid solution, (Y2O3)2(Sc2O3)9(ZrO2)89, using isotopic exchange and line scanning by Secondary Ion Mass Spectrometry, as a function of temperature. The values of the tracer diffusion coefficient are in the range of 10? 8–10? 7 cm2 s? 1 and the Arrhenius activation energy was calculated to be 0.9 eV; both valid in the temperature range of 600–900 °C. Electrical conductivity measurements were carried out using 2-probe and 4-probe AC impedance spectroscopy, and a 4-point DC method at various temperatures. There is a good agreement between the measured tracer diffusion coefficients (D?, Ea = 0.9 eV) and the diffusion coefficients calculated from the DC total conductivity data (Dσ, Ea = 1.0 eV), the latter calculated using the Nernst–Einstein relationship.  相似文献   

11.
The N2 and O2 pressure broadening coefficients of the pure rotational transitions at 625.66 GHz (NKaKc=101?9–100?10, J=10.5–10.5) and 649.70 GHz (NKaKc=102?9–92?8, J=9.5–8.5) in the vibronic ground state X2A′ of the perhydroxyl (HO2) radical have been determined by precise laboratory measurements. For the production of HO2, the mercury-photosensitized reaction of the H2 and O2 precursors was used to provide an optimum condition for measurement of the pressure broadening coefficient. The Superconducting Submillimeter-wave Limb Emission Sounder (SMILES) was designed to monitor the volume mixing ratio of trace gases including HO2 in the Earth's upper atmosphere using these transitions. The precise measurement of pressure broadening coefficient γ in terms of the half width at half maximum is required in order to retrieve the atmospheric volume mixing ratio. In this work, γ coefficients of the 625.66 GHz transition were determined for N2 and O2 at room temperature as γ(N2)=4.085±0.049 MHz/Torr and γ(O2)=2.578±0.047 MHz/Torr with 3σ uncertainty. Similarly, the coefficients of the 649.70 GHz transition were determined as γ(N2)=3.489±0.094 MHz/Torr and γ(O2)=2.615±0.099 MHz/Torr. The air broadening coefficients for the 625.66 GHz and 649.70 GHz lines were estimated at γ(air)=3.769±0.067 MHz and 3.298±0.099 MHz respectively, where the uncertainty includes possible systematic errors. The newly determined coefficients are compared with previous results and we discuss the advantage of the mercury-photosensitized reaction for HO2 generation. In comparison with those of other singlet molecules, the pressure broadening coefficients of the HO2 radical are not much affected by the existence of an unpaired electron.  相似文献   

12.
The submillimeter-wave spectrum of H2O2has been recorded by means of a tunable FIR spectrometer. Stark measurements have been performed on three selected transitions in then= 0 state, namely, the 220–110(τ = 4 ← 2) at 1 272 297 MHz, the 826–716(τ = 1 ← 3) at 882 451 MHz, and the 928–818(τ = 1 ← 3) at 962 933 MHz. Accurate values of the transition dipole moments of the molecule have been derived by considering the interaction between the levels involved in the transition and the close near-resonant levels. About 40 new lines, belonging to therQ4andrQ5subbranches of the rotational transitions between the lowest torsional states (τ = 1, 2, 3, 4n= 0), have been measured in the 2.8 and 3.4 THz spectral regions and analyzed together with the previously measured millimeter- and submillimeter-wave, as well as IR, transitions.  相似文献   

13.
The far infrared spectrum of HCOOH was recorded at a high resolution (0.0009 cm?1) and long path length (72 m) at the far-infrared beamline, Canadian Light Source. Spectra were recorded in the region 62–300 cm?1, showing transitions from the trans-isomer.Ground state rotational transitions with Ka up to 30, were identified up to 175 cm?1, extending the observation reported in the literature. A total of 3321 transitions were assigned and fitted together with previous (4149) published data. An improved set of rotational parameters was obtained adopting the symmetric top (A) reduction of the rotational Hamiltonian in the Ir representation. The newly measured far infrared transitions allowed the determination of all diagonal and off diagonal 8th order parameters L and of some of the diagonal 10th order parameters P.  相似文献   

14.
During the last 4 years, empirical line lists for methane at room temperature and at 80 K were constructed from spectra recorded by (i) differential absorption spectroscopy (DAS) in the high energy part of the tetradecad (5852?6195 cm?1) and in the icosad (6717–7589 cm?1) and (ii) high sensitivity CW-Cavity Ring Down Spectroscopy (CRDS) in the 1.58 μm and 1.28 μm transparency windows (6165–6750 cm?1 and 7541–7919 cm?1, respectively). We have recently constructed the global line lists for methane in “natural” isotopic abundance, covering the spectral region from 5854 to 7919 cm?1 (Campargue A, Wang L, Kassi S, Mondelain D, Bézard B, Lellouch E, et al., An empirical line list for methane in the 1.26–1.71 μm region for planetary investigations (T=80–300 K). Application to Titan, Icarus 219 (2012) 110–128). These WKMC (Wang, Kassi, Mondelain, Campargue) empirical lists include about 43,000 and 46,420 lines at 80±3 K and 296±3 K, respectively. The “two temperature method” provided lower state energy values, Eemp, for about 24,000 transitions allowing us to account satisfactorily for the temperature dependence of the methane absorption over the considered region. The obtained lists have been already successfully applied in a large range of temperature conditions existing on Titan, Uranus, Pluto, Saturn and Jupiter.In the present contribution, we provide some improvements to our lists by using literature data to extend the set of lower state energy values and by correcting the distortion of the high Eemp values (J>10) due to the temperature gradient existing in the cryogenic cell used for the recordings. The proposed refinements are found to have an overall limited impact but they may be significant in some spectral intervals below 6500 cm?1.The new version of our lists at 80 K and 296 K is provided as Supplementary Material: the WKMC@80K+ and WKMC@296K lists are adapted for planetary and atmospheric applications, respectively. The WKMC@80K+ list is made applicable over a wider range of temperatures and shows satisfactory extrapolation capabilities up to room temperature. It was obtained by transferring to the 80 K list the 27,580 single lines present only in the 296 K list, with corresponding lower state energy values chosen to make them below the detectivity limit at 80 K.In the discussion, the different line lists and databases available for methane in the near infrared are compared and some suggestions are given.  相似文献   

15.
The pure rotational spectra of three silicon isotopologues of HSiI and two isotopologues of DSiI have been recorded by pulsed-jet Fourier transform microwave (FTMW) spectroscopy. Neon was passed over dry ice cooled H3SiI or D3SiI and introduced into the pulsed valve of the FTMW spectrometer. The monoiodosilylenes HSiI and DSiI were produced in situ with a 1000 V DC-discharge nozzle. Only a-type transitions occur in monoiodosilylene from 6 to 26 GHz. We observe Ka = 0 a-type transitions for H28SiI, H29SiI, H30SiI, and D29SiI, and both Ka = 0 and 1 a-type transitions for D28SiI. Rotational constants, centrifugal distortion constants, iodine nuclear quadrupole coupling constants, and nuclear spin–molecular rotation constants were measured.  相似文献   

16.
In this paper angularly resolved photoelectron spectra (PES) and constant-ionic-state (CIS) spectra are presented for the atmospherically important species N and OH.The natural width Γ, line shape parameters q and ρ2 and discrete oscillator strengths f have been measured for the members of the N*[2s2p3(5S), np] (4P)  N(4S) autoionizing resonances for n = 5–10. The n = 5 parameters calculated in this work are in good agreement with the values obtained previously whereas for the resonances with n = 6–10 the values of these parameters are reported for the first time. The asymmetry parameter (β) for the first band of N atoms, the N+(3P)  N(4S) ionization, has also been measured in the photon energy range of the above autoionizing resonances.For OH, CIS spectra have been recorded for the first photoelectron band corresponding to the ionization OH+(X3Σ, v+ = 0)  OH(X2Π, v″ = 0). In these spectra, rotationally partially resolved bands associated with OH*(a1Δ3d, v′ = 0)  OH(X2Π, v″ = 0) resonances have been observed. Suggestions for their assignment are made on the basis of their positions and band simulations which use rotational line strength calculations.  相似文献   

17.
Magnetisation and magneto-resistance measurements have been carried out on superconducting Ba1?xKxFe2As2 samples with x = 0.40 and 0.50. From high field magnetization hysteresis measurements carried out in fields up to 16 T at 4.2 K and 20 K, the critical current density has been evaluated using the Bean critical state model. The JC determined from the high field data is >104 A/cm2 at 4.2 K and 5 T. The superconducting transitions were also measured resistively in increasing applied magnetic fields up to 12 T. From the variation of the TC onset with applied field, dHC2/dT at TC was obtained to be ?7.708 T/K and ?5.57 T/K in the samples with x = 0.40 and 0.50.  相似文献   

18.
19.
Lorentz air-broadened half widths, pressure-induced shifts and their temperature dependences have been measured for over 430 transitions (allowed and forbidden) in the ν4 band of 12CH4 over the temperature range 210–314 K. A multispectrum non linear least squares fitting technique was used to simultaneously fit a large number of high-resolution (0.006–0.01 cm?1) absorption spectra of pure methane and mixtures of methane diluted with dry air. Line mixing was detected for pairs of A-, E-, and F-species transitions in the P- and R-branch manifolds and quantified using the off-diagonal relaxation matrix elements formalism. The measured parameters are compared to air- and N2-broadened values reported in the literature for the ν4 and other bands. The dependence of the various spectral line parameters upon the tetrahedral symmetry species and rotational quantum numbers of the transitions is discussed. All data used in the present work were recorded using the McMath–Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak.  相似文献   

20.
The goal of this study is to achieve absolute line intensities for the strong 5.7 and 3.6 μm bands of formaldehyde and to generate, for both spectral regions, an accurate list of line positions and intensities. Both bands are now used for the infrared measurements of this molecule in the atmosphere. However, in the common access spectroscopic databases there exists, up to now, no line parameters for the 5.7 μm region, while, at 3.6 μm, the quality of the line parameters is quite unsatisfactory. High-resolution Fourier transform spectra were recorded for the whole 1600–3200 cm?1 spectral range and for different path-length-pressure products conditions. Using these spectra, a large set of H2CO individual line intensities was measured simultaneously in both the 5.7 and 3.6 μm spectral regions. From this set of experimental line strength which involve, at 5.7 μm the ν2 band and, at 3.6 μm, the ν1 and ν5 bands together with nine dark bands, it has been possible to derive a consistent set of line intensity parameters for both the 5.7 and 3.6 μm spectral regions. These parameters were used to generate a line list in both regions. For this task, we used the line positions generated in [Margulés L, Perrin A, Janeckovà R, Bailleux S, Endres CP, Giesen TF, et al. Can J Phys, accepted] and [Perrin A, Valentin A, Daumont L, J Mol Struct 2006;780–782:28–42] for the 5.7 and 3.6 μm, respectively. The calculated band intensities derived for the 5.7 and 3.6 μm bands are in excellent agreement with the values achieved recently by medium resolution band intensity measurements. It has to be mentioned that intensities in the 3.6 μm achieved in this work are on the average about 28% stronger than those quoted in the HITRAN or GEISA databases. Finally, at 3.6 μm the quality of the intensities was significantly improved even on the relative scale, as compared to our previous study performed in 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号