首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In an effort to design low-melting, durable, transparent glasses, two series of glasses have been prepared in the NaPO3–ZnO–Nb2O5–Al2O3 system with ZnO/Nb2O5 ratio of 2 and 1. The addition of ZnO and Nb2O5 to the sodium aluminophosphate matrix yields a linear increase of properties such as glass transition temperature, density, refractive index and elastic moduli. The chemical durability is also significantly, but nonlinearly, improved. The glass with the highest niobium concentration, 55NaPO3–20ZnO–20Nb2O5–5Al2O3 was found to have a dissolution rate of 4.5 × 10? 8 g cm? 2 min? 1, comparable to window glass. Structural models of the glasses were developed using Raman spectroscopy and nuclear magnetic resonance spectroscopy, and the models were correlated with the compositional dependence of the properties.  相似文献   

3.
Vitreous samples (1-x) AgPO3x MoO3 (0  x  0.5) were prepared by conventional melt-quenching and characterized by Differential Scanning Calorimetry (DSC). The structural evolution of the vitreous network was monitored by 31P solid state nuclear magnetic resonance and Raman scattering, and assignments were aided by corresponding studies on the model compound AgMoO2PO4. The 31P MAS-NMR data differentiate between species having two, one, and zero P―O―P linkages (Q(2) Q(1), and Q(0) species), respectively. Interatomic connectivities involving these units are revealed by two-dimensional INADEQUATE data, utilizing the formation of double quantum coherences mediated by indirect 31P–31P spin–spin interactions via P―O―P linkages. As this method discriminates against isolated P atoms, it also serves as an important spectral editing tool for constraining lineshape fits. 95Mo NMR data and Raman spectra suggest that the Mo species are most likely six-coordinate, forming four P―O―Mo linkages and are otherwise invariant with composition, except at MoO3 contents  40 mole %, where some Mo―O―Mo bonding and/or clustering is observed.  相似文献   

4.
Vickers hardness and refractive index was determined for Ca–Si–O–N glasses with 14.6–58 e/o N and 19–42 e/o Ca. By applying slow cooling rates, transparent glasses were obtained for compositions near Ca9.94Si10O17.73N8.14, while the majority of the glasses were opaque due to small inclusions of elemental Si and/or Ca-silicide. Determined glass densities varied between 2.80 and 3.25 g/cm3. Hardness was found to vary from 7.3 to 10.1 GPa at a load of 500 g and, respectively increase and decrease linearly with N and Ca content. The refractive index was found to increase linearly with N content from 1.62 to 1.95 and showed no significant dependence on Ca content.  相似文献   

5.
6.
Ni- and Cu–free Zr–Al–Co–Ag bulk metallic glasses (BMGs) were synthesized by copper mold casting. The effects of Ag addition for partially replacing Co of Zr53Al16Co31 BMG on the corrosion behavior, surface chemistry and in vitro biocompatibility of BMGs were investigated. The Zr–Al–Co–Ag BMGs are spontaneously passivated with low passive current densities in phosphate buffered saline (PBS) solution. Partial substitution of Co by Ag is effective in improving the corrosion resistance of the Zr–Al–Co BMG. X-ray photoelectron spectroscopy (XPS) measurements reveal that the Ag addition increases the concentration of Zr and decreases the concentration of Al in the surface passive film of BMGs, which is responsible for the enhanced corrosion resistance of Zr–Al–Co–Ag BMGs. Mouse MC3T3-E1 pre-osteoblast cell proliferation results and morphology observations show that the Zr–Al–Co–Ag BMGs exhibit comparable cell viability and proliferation activity with those of Ti–6Al–4V alloy, demonstrating their good biocompatibility. The high corrosion resistance in PBS and low in vitro cytotoxicity of Zr–Al–Co–Ag BMGs suggest an initial biocompatibility for biomedical applications.  相似文献   

7.
《Journal of Non》1997,210(1):95-100
Bi particles of different sizes were produced in Na2O–B2O3 glasses by melt quenching and heat treatment technique. Melting temperature of Bi particles was measured by differential scanning calorimetry and X-ray diffraction. Measured melting temperatures of Bi particles are lower than bulk Bi melting temperature. Results of transmission electron microscopy were analyzed for the dependence of melting temperature on particle radius. The pressure and surface energy effect on melting temperature is estimated. The melting behavior of Bi particles in Na2O–B2O3 glasses depends on the difference in the interfacial energies between the solid particle/glass and liquid particle/glass, and liquid particle/glass, σsmσlm, which is estimated to be 255×10−3 J m−2.  相似文献   

8.
Glasses with composition xLi2O-(30 ? x)Na2O–10WO3–60B2O3 (where x = 0, 5, 10, 15, 20, 25 and 30 mol%) have been prepared using the melt quenching technique. In the present work, the mixed alkali effect (MAE) has been investigated in the above glass system through density and modulated DSC studies. The density and glass transition temperature of the present gasses varies non-linearly, the exhibiting the mixed alkali effect. From the optical absorption studies, the values of direct optical band gap, indirect optical band gap energy (Eo) and Urbach energy(ΔE) have been evaluated. The values of Eo and ΔE vary non-linearly with composition parameter, showing the mixed alkali effect. The electronic polarizability of oxide ions, optical basicity and the Yamashita–Kurosawa's interaction parameter have been examined to check the correlation among them and bond character. Based on good correlation among electronic polarizability of oxide ions, optical basicity and the Yamashita–Kurosawa's interaction parameter, the present Li2O–Na2O–WO3–B2O3 glasses were classified as normal ionic (basic) oxides.  相似文献   

9.
The results of a structural study combining NMR and Raman spectroscopy of several melt-derived glasses in the system Na2O–MgO–CaO–P2O5–SiO2 are presented. The Raman spectra show clear changes in the Si–O–Si vibrational modes (related to the bridging oxygen atoms, BO) and also verify the presence of non-bridging oxygen atoms (NBO), also named terminal oxygens. The intensity of the Si–O–NBO stretching mode depends on the cation concentration. It can be concluded from the NMR studies that the MgO-containing samples have orthophosphate units charge-compensated by Ca2+ and Mg2+. The silicate matrix also contains both types of two-valent cations and consists of Q2 and Q1 units. Similarly, the Na2O-containing samples contain isolated orthophosphate units in a silicate matrix (Q2 and Q3 units), both charge-compensated by mixed cations Ca2+ and Na+. These experimental data were compared with theoretical parameters given by the Stevels model, which is a suitable tool for understanding bioactive behavior of these glasses. Furthermore, results of the in vitro tests carried out in simulated body fluids are presented and compared with both Raman and NMR structural data.  相似文献   

10.
Development of crystallization in the CaO–Al2O3–TiO2–P2O5 system glasses was investigated in the presence of ionic and metallic silver. Differential thermal analysis, X-ray diffractometry, ultra violet–visible spectrophotometry, atomic force microscopy and scanning electron microscopy were used to evaluate the resulted glasses and glass-ceramics. It was found that silver ions facilitated crystallization by decreasing the viscosity of the glasses. However, metallic silver, which was formed through heat treatment in hydrogen atmosphere, improved heterogeneous crystallization of the reduced glasses in the subsequent heat treatment. The preformed metallic silver led to effective crystallization of calcium titanium phosphate (CaTi4(PO4)6), calcium metaphosphate (Ca(PO3)2) and calcium pyrophosphate (Ca2P2O7) phases at significantly decreased temperatures. The two latter phases were partially dissolved out by leaching in acidic solution and left out a porous structure of calcium titanium phosphate glass-ceramic.  相似文献   

11.
The structural role, coordination geometry and valence of Fe in a series of Fe2O3–PbO–SiO2–Na2O glasses are studied by means of Fe-K-NEXAFS and EXAFS spectroscopies. Parameters for the study are the concentration of the Fe and Pb-oxides, the SiO2/Na2O ratio and the cast temperature. The EXAFS and NEXAFS results reveal that the role of Fe3+ depends on the concentration of Fe2O3. More specifically, in most of the studied quaternary systems, the Fe3+ ion is a glass former, i.e. the Fe atoms belong to FeO4 tetrahedra that participate in the formation of the glassy network. The role of Fe as an intermediate oxide is identified only in one sample with 20 wt% Fe2O3, where ~80 at.% of the Fe atoms are tetrahedrally coordinated with O atoms, while the remaining ~20 at.% of the Fe atoms occupy octahedral sites. It is also revealed that the tetrahedral coordination of Fe in the vitreous matrix is destroyed when a number of parameters is altered, such as the Tcast, the (Fe + Si)/O and the SiO2/Na2O ratio.  相似文献   

12.
The new calcium aluminoborate glasses with the composition of CaO–Al2O3–B2O3–RE2O3 (RE = Dy and Tb) were synthesized and the luminescence of Dy3+ and Tb3+ was investigated. The results show that the emission intensity of Tb3+ ion was enhanced when introducing Dy3+ ion into CaO–Al2O3–B2O3–Tb2O3 glass due to the energy transfer processes between Dy3+ and Tb3+. The energy transfer efficiencies, transfer probabilities as well as donor–acceptor critical distances were also calculated. The energy transfer mechanism between Dy3+ and Tb3+ ions is electric dipole–dipole interaction, which can be concluded by both fluorescence decay and emission intensity ratio varieties.  相似文献   

13.
Influence of single fluxes (10 wt.% B2O3), bi-component fluxes (4 wt.% B2O3 + 6 wt.% Na3AlF6), and complex fluxes (4 wt.% B2O3 + 4 wt.% Na3AlF6 + 2 wt.% Na2O) on the thermal kinetic parameters, microstructure, flexural strength and coefficient of thermal expansion (CTE) of Li2O–Al2O3–4SiO2 (LAS) glass–ceramics was investigated through differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscope (SEM). The results showed that complex fluxes could efficiently decrease transition temperature (Tg) and crystallization temperature (Tp), and accelerate the formation of needle-like β-spodumene crystals which benefit high flexural strength. The homogeneous LAS glass–ceramic (sample C3) which has a high strength of 132.4 MPa and low CTE (100–650 °C) of 2.74 × 10? 6/°C is obtained by doping of the initial LAS glass by complex fluxes of 4 wt.% B2O3, 4 wt.% Na3AlF6, and 2 wt.% Na2O, nucleating at 630 °C/120 min and then crystallized at 780 °C/120 min. It is worthy of further investigation as a bonder of diamond composite material due to its outstanding prosperities.  相似文献   

14.
Regularities of phase transformations in glasses of the Li2O–Al2O3–SiO2–TiO2 system doped with up to 2.5 mol% of alkali- and divalent metal oxides were studied by X-ray diffraction analysis, Raman scattering and optical spectroscopy. Ni(II) ions were used as spectral probes of phase transformations because Ni(II)-ions enter the inhomogeneous regions formed during the phase separation and crystallization, and their absorption spectra change with heat-treatment temperature reflecting formation of aluminotitanate amorphous regions, spinel nanosized crystals and β-quartz solid solutions, consequently.It was demonstrated that the technological additives do not change the sequence of the phases' formation but accelerate the liquid phase separation and crystallization. Addition of MgO and ZnO leads to increasing the temperature range of spinel precipitation. Addition of CaO, BaO and PbO results in increasing the light scattering of prepared glass-ceramics.In selection of the technological additives for decreasing the melting temperature of glass-ceramics for optical and photonic applications the influence of the additives on the structure and optical properties of the prepared material should be considered.  相似文献   

15.
Li Zhang  Ling-ling Shi  Jian Xu 《Journal of Non》2009,355(16-17):1005-1007
In the Hf–Cu–Ni–Al quaternary system, the Hf51Cu27.75Ni9.25Al12 bulk metallic glass (BMG) exhibits the best combination of the large glass-forming ability (GFA) and compressive plasticity. Minor substitution of Nb for Hf in Hf–Cu–Ni–Al BMGs degrades not only the GFA but also plasticity, while the substitution of Ta does not have an appreciable effect on both properties. For the investigated Hf-based BMGs, the shear modulus G is a more sensitive indicator to correlate with their plasticity than the Poisson′s ratio. Meanwhile, the correlation between the G and the glass transition temperature Tg for the Hf-based BMGs can be expressed as G = 9.9 + 576 (Tg/Vm)[1 ? 4/9(T/Tg)2/3].  相似文献   

16.
Ki-Dong Kim 《Journal of Non》2008,354(15-16):1715-1720
The influence of K2O/(MgO + K2O) on some melt properties, including crystallization during cooling of melts and glass-forming ability, was investigated in the Li2O–Al2O3–SiO2 system with low Al2O3 content. The dependence of viscosity on K2O/(MgO + K2O) above 1000 °C showed a monotonic decrease due to the reduction of [MgO4] concentration and the conductivity also decreased due to the larger ion radius of K. The temperature dependence of conductivity for all melts showed an abrupt change at one temperature due to crystallization in which temperature of crystallization decreases with increase of K2O. The crystallization behavior near liquidus temperature was studied quantitatively by calculating the crystal volume fraction from apparent viscosity value. The glass-forming ability of the melts was discussed by using data related with viscosity and crystallization. Finally, it was suggested that the melts with K2O/(MgO + K2O) ? 0.75 have a good glass-forming ability.  相似文献   

17.
18.
Optical absorption, luminescence excitation and emission spectra of Er3+ centres in Ca3Ga2Ge3O12:Er glass with Er content of 1.46 wt% are presented and analysed. Luminescence kinetics for the main Er3+ transitions was satisfactorily described by single exponential decays with characteristic lifetimes. Oscillator strengths, phenomenological Judd–Ofelt intensity parameters, radiative decay rates (emission probabilities of transitions), branching ratios and radiative lifetimes for Er3+ centres in Ca3Ga2Ge3O12:Er glass are calculated and compared with the corresponding parameters of the Ca3Sc2Ge3O12:Er3+ garnet and other crystals and glasses. Quantum efficiency, η, of the 4I13/2  4I15/2 Er3+ transition is determined. Incorporation peculiarities and local structure of Er3+ luminescence centres in Ca3Ga2Ge3O12:Er3+ glass are discussed in comparison with garnet crystals and oxide glasses. On the basis of the presented results and referenced EXAFS data for Er, Eu and Ho impurities (L3-edge) it has been shown that Er3+ centres in Ca3Ga2Ge3O12 glass occupy network sites with the coordination number to oxygen of N = 6.  相似文献   

19.
《Journal of Non》1997,217(1):99-105
27Al and 29Si MAS NMR studies were performed on roller-quenched SiO2Al2O3-glasses with Al2O3 contents ranging from 10 to 60 mol% and on SiO2Al2O3Na2O glasses containing 10 mol% Al2O3 and 2.5 to 10 mol% Na2O. Pure aluminium silicate glasses show NMR peaks at 0, 30 and 60 ppm. The frequency distribution of the different Al-sites is not affected by the glass composition. In glasses of the system SiO2Al2O3Na2O the 30 ppm peak decreases to zero as the Na2O content increases. The 30 ppm peak is assigned to distorted triclustered AlO-tetrahedra, rather than to fivefold coordinated Al. Triclustering of tetrahedra may provide for charge neutrality in glasses with molar excess of Al2O3 over Na2O. As charge balance is increasingly achieved by addition of alkali ions, the tendency of tetrahedral triclustering is reduced, reflected by the disappearance of the 30 ppm peak in glasses containing ≥ 7.5 mol% Na2O.  相似文献   

20.
The structure of glasses within the system Li2O–Al2O3–B2O3–P2O5 has been studied through 31P, 11B and 27Al Nuclear Magnetic Resonance, and the effect of Al2O3 substitution by B2O3 and P2O5 network formers on the structure and properties investigated for a constant Li2O content. Multinuclear NMR results reveal that substitution of Al2O3 for B2O3 and P2O5 network formers in a glass with composition 50Li2O·15B2O3·35P2O5 produces a change in boron environment from four-fold to three-fold coordination. Meanwhile aluminum can be present in four-, five- and six-fold coordinations a higher amount of Al(IV) groups is found for increasing alumina contents. The behavior of the glass transition temperature and electrical conductivity of the glasses has been interpreted as a function of the structural changes induced in the glass network when alumina is substituted for B2O3, P2O5 or both. Small additions of alumina produce a drastic increase in glass transition temperature, while it does not change for [Al2O3] greater than 3 mol.%. However, the electrical conductivity shows very different behavior depending on the type of substitution; it can remain constant when B2O3 content decreases or sharply decrease when P2O5 is substituted by Al2O3, which is attributed to a higher amount of BO3 and phase separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号