共查询到20条相似文献,搜索用时 0 毫秒
1.
Lilian R. Avila Evelisy C. de O. Nassor Paula F.S. Pereira Alexandre Cestari Katia J. Ciuffi Paulo S. Calefi Eduardo J. Nassar 《Journal of Non》2008,354(42-44):4806-4810
In this work, we report the synthesis of europium-doped phosphosilicate glasses from tetraethylorthosilicate (TEOS), phenyltrietoxysilane (PTES) and ammonium phosphate (NH4H2PO4) prepared by the sol–gel process. The matrix was synthesized by modified Stöber methodology. The alkoxide precursors PTES and TEOS were mixed with NH4H2PO4, in the presence of europium III chloride, using ethanol as solvent in basic catalysis. These materials were studied by photoluminescence spectroscopy (PL), thermal analysis (TGA/DTA), transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). The results obtained for the materials show the formation of conchoidal-fractures, which are characteristics of glass materials. The thermal analysis showed the thermal stability of materials up to 300 °C. Eu III has been used as structural probe due to its photophysical properties. The PL spectra displays the lines characteristics of the Eu (III) ion 5D0 → 7FJ (J = 0, 1, 2, 3 and 4). Wide bands were observed, indicating non-homogeneous sites that are characteristic of amorphous systems. 相似文献
2.
The results of investigations of electrical conductivity and the structure of NbN–TiN thin films in a different NbN/TiN molar ratio are presented in this work. Sol–gel derived xNb2O5?(100?x)TiO2 coatings (where x = 100, 90, 80, 70, 60, 50, 40, 0 mol%) were nitrided at 1200 °C to obtain NbN–TiN films. The structural transformations occurring in the films as a result of ammonolysis were studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The electrical conductivity was measured with a conventional four-terminal method in the temperature range of 5–280 K. The NbN–TiN samples exhibited a negative temperature coefficient of resistivity. The positive temperature coefficient of resistivity was observed only for the x = 0 sample. The results of conductivity versus temperature may be described on the grounds of a model proposed for a weakly disordered system. The film thickness effect on the superconducting properties was studied for x = 80 and x = 100 samples. The superconducting transition was not observed in all samples, the exception was x = 80 sample, 1050 nm in thickness. It is not clear, why all x = 100 samples do not exhibit superconducting transition in resistivity measurements. It seems to be possible, that the Josephson junction formation between NbN grains could be blocked by non-superconducting phases present in these samples. 相似文献
3.
Evandro A. de Morais Luis V.A. Scalvi Alberto A. Cavalheiro Américo Tabata José Brás B. Oliveira 《Journal of Non》2008,354(42-44):4840-4845
Some very relevant optical, electrical, and structural properties of SnO2 doped with rare-earth ions Er3+ and Eu3+ are presented. Films are produced by the sol–gel-dip coating process, and may be described as a combination of nanoscopic dimension crystallites (about 3–10 nm) with their respective intergrain potential barriers. The Er3+ and Eu3+ ions are expected to act as acceptors in SnO2, which is a natural n-type conductor, inducing a high degree of charge compensation. Electron trapping and emission spectra data are presented and are rather distinct, depending on the location of the rare-earth impurity. This behavior allows the identification of two distinct centers: located either in the SnO2 lattice or segregated at the particles surface. Based on a model for thermally activated cross-section defects, the difference between the capture energy of the photo-excited electron and the intergrain potential barrier is evaluated, leading to distinct values for high and low symmetry sites. A higher distortion in the lattice of undoped SnO2 and SnO2:Eu (1 at.%) was evaluated from Rietveld refinements of X-ray diffraction data. This was confirmed by Raman spectra, which are associated with the particles size and disorder. By comparing the samples with the same doping concentration, it was found that this disorder is higher in Eu-doped SnO2 than in Er-doped SnO2, which is in agreement with a higher energy for the lattice relaxation in the trapping process by Eu3+ centers. 相似文献
4.
Francesco d’Acapito Ana C. Marques Luís F. Santos Rui M. Almeida 《Journal of Non》2008,354(45-46):4940-4943
The local order around ion-implanted Er3+ ions in SiO2–TiO2–HfO2 thin films prepared by sol–gel, was studied by extended X-ray absorption fine structure at the Er-LIII edge. Both the first and second coordination shells of Er3+ were analyzed for different heat-treatments. While the first coordination shell always consisted of ~6–7 oxygen atoms at distances varying between 2.23 and 2.27 Å, the structure of the second shell was found to vary with the film composition and heat-treatment. Namely, whereas Si was found to be the only second neighbor of erbium in binary SiO2–TiO2 films, the addition of HfO2 caused a preferential replacement of Si by Hf. The post-implantation thermal treatments also played a fundamental role in determining the final environment of the erbium ions. 相似文献
5.
M.C. Kao H.Z. Chen S.L. Young B.N. Chuang W.W. Jiang J.S. Song S.S. Jhan J.L. Chiang L.T. Wu 《Journal of Crystal Growth》2012,338(1):139-142
Tantalum-substituted Bi4Ti3O12 (Bi4Ti3-x/5Tax/5O12, BTTO) thin films were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates by sol–gel technology. The effects of various processing parameters, including Ta content (x=0~0.08) and annealing temperature (500~800 °C), on the growth and properties of thin films were investigated. X-ray diffraction analysis shows that the BTTO thin films have a bismuth-layered perovskite structure with preferred (117) orientation. With the increase of Ta content, the grain size of film decreased slightly, and highly (117)-oriented BTTO films were obtained in the composition of x=0.06. Ta doping on the B-site of Bi4Ti3O12 could induce the distortion of oxygen octahedral and decrease the oxygen vacancy concentration by a compensating effect. The highly (117)-oriented BTTO thin films with x=0.06 exhibits the maximum remanent polarization (2Pr) of 50 μC/cm2 and a low coercive field (2Ec) of 104 kV/cm, fatigue free characteristics up to ≧ 108 switching cycles. 相似文献
6.
Daniela C.L. Vasconcelos Eduardo H.M. Nunes Wander L. Vasconcelos 《Journal of Non》2012,358(11):1374-1379
In this work we obtained sol–gel alumina coatings on AISI 304 stainless steel substrates. Alumina sols were prepared by using aluminum isopropoxide (AI) as precursor, acetic acid (HOAc) as catalyst, ethanol (C2H5OH) or isopropanol (C3H8O) as solvent, and water. The as-prepared solutions were deposited on stainless steel substrates by means of the dip-coating technique. The obtained composites were characterized by Fourier transform infrared spectroscopy (FTIR) and Auger electron spectroscopy (AES). We observed that the concentration of AlO type bonds in the obtained alumina coatings depends on the solvent type used, temperature and peptization state of the sol, withdrawal speed, and number of dipping cycles. AES experiments showed that the interface formed between the alumina coating and substrate surface is in general formed by several layers of different chemical compositions. 相似文献
7.
In this work nanocrystalline BaFe12O19 thin films have been prepared on the Si (1 1 0) substrates by a sol–gel method using the aqueous solution of metal nitrates. The efforts have been done to decrease the calcination temperature and to reduce the crystallite size of the single-phase barium ferrite thin films. The precursor solutions were primed with the various Fe/Ba ratios and two kinds of the basic agents, and the coated films were heat treated at the different temperatures. The thin films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The effects of calcination temperature, molar ratio of Fe/Ba and basic agent on composition, crystallites size and morphology were also investigated. 相似文献
8.
This work presents the results of the structural analysis of xNbN–(100-x)SiO2 (x = 100, 80, 60 mol%) thin films by X-ray absorption spectroscopy (XAS). To prepare the films, thermal nitridation of sol–gel derived coatings have been performed. The resulting films have a granular structure with NbN grains distributed in the SiO2 matrix. The size of the grains depends on the NbN/SiO2 molar ratio. A detailed X-ray absorption fine structure (XAFS) data analysis shows that in all the samples both nitrogen and oxygen atoms are present as nearest neighbours of Nb. The intra-granular phase is an ordered NbN phase, whereas the shells around the grains are formed mainly by an oxide phase and, possibly, by other niobium nitride phases (probably with low nitrogen content). Two possible origins of the inter-granular oxide phase were considered: incomplete nitridation of Nb2O5 and addition of SiO2. Both of them are connected with the sample preparation method. The obtained XAS results allowed us to correlate the thickness and stoichiometry of the films under study with the electronic structure of the Nb ions and with the local geometric structure in their environment. 相似文献
9.
The Ni oxide and mixed Co/Ni oxide films were prepared by sol–gel dip coating method at optimum conditions. The XRD analysis reveals the pure and Co mixed nickel oxide films to be in amorphous state. The field emission SEM images reveal nanopore like structure for Ni oxide film and well defined grains with pores for Ni oxide films containing 5 wt.% of Co. Electrochromic properties have been studied using cyclic voltammetric (CV) and in situ spectro-electrochemical techniques. The pure and cobalt mixed (5 wt.%) Ni oxide films exhibit anodic/cathodic diffusion coefficient of 4.93 ± 0.14/3.74 ± 0.10 × 10?10 cm2/s and 10.00 ± 0.24/7.60 ± 0.20 × 10?10 cm2/s respectively after 300 cycles. The cobalt mixed (5 wt.%) Ni oxide films exhibit the bleached/coloured state transmission of 90.42/7.21% with a photopic constrast ratio of 12.54 and the colouration and bleaching time were 5.9 and 2.4 s respectively. The addition of cobalt beyond 5% leads to poor transparency and inhibited electrochromic switching character. 相似文献
10.
P.C. Ricci C.M. Carbonaro L. Stagi A. Anedda F. Ferrari D. Capsoni A. Magistris 《Journal of Non》2011,357(8-9):1908-1911
The optical properties of sol–gel prepared Cerium doped Lutetium and Yttrium oxyorthosilicates are investigated in the vacuum ultraviolet energy range by means of synchrotron radiation. The excitation and emission properties are compared to commercial samples grown by Czochralski method. The sol gel polycrystals do show emission features comparable to the ones of the monocrystals but with a slightly smaller decay time. Preliminary radioluminescence measurements indicate the possibility to apply the sol gel synthesized polycrystals as scintillating materials in the low X-ray energy range. 相似文献
11.
Sol–gel derived xNb2O5–(100 ? x)SiO2 films (where x = 100, 80, 60, 50, 40, 20, 0 mol%) were nitrided at various temperatures (800 °C, 900 °C, 1000 °C, 1100 °C and 1200 °C). The structural transformations occurring in the films as a result of ammonolysis were studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The XRD results have shown that the temperatures below 1100 °C were too low to obtain a pure NbN phase in the samples. The AFM observations indicate that the formation of the NbN phase and the size of NbN grains are related to the silica content in the layer. NbN grains become more regular and larger as the niobium content increases. The maximum grain size of about 100 nm was observed for x = 100. Preparation of the Nb2O5–SiO2 sol–gel derived layers and the subsequent nitridation is a promising method of inducing crystalline NbN in amorphous matrices. It follows from the XPS results that a small amount of Nb2O5 remains in the films after nitridation at 1200 °C and that nitrogen reacted not only with Nb2O5 but also with SiO2. 相似文献
12.
13.
To investigate the effects of tellurium (Te) deposition rate on the properties of Cu–In–Te based thin films (Cu/In=0.30–0.31), the films were grown on both bare and Mo-coated soda-lime glass substrates at 200 °C by co-evaporation using a molecular beam epitaxy system. The microstructural properties were examined by means of scanning electron microscopy and X-ray diffraction. The crystalline quality of the films was improved with increase in the deposition rate of Te, and exhibited a single CuIn3Te5 phase with a highly preferred (1 1 2) orientation. Te-deficient film (Te/(Cu+In)=1.07) grown with a low Te deposition rate showed a narrow bandgap of 0.99 eV at room temperature. The solar cell performance was affected by the deposition rate of Te. The best solar cell fabricated using CuIn3Te5 thin films grown with the highest deposition rate of Te (2.6 nm/s) yielded a total area (0.50 cm2) efficiency of 4.4% (Voc=309 mV, Jsc=28.0 mA/cm2, and FF=0.509) without light soaking. 相似文献
14.
《Journal of Non》1999,243(2-3):168-174
Polyborosiloxanes as a precursor for borosilicate gel plates and fibers were obtained by the reaction of silicic acid and boron tri-n-butoxide followed by alkoxylation with 1-butanol. Gel fibers were prepared after concentration and aging of the polymer solutions with molar ratios of silicic acid to boron tri-n-butoxide of 7/3–2/3. Further aging of the solutions gave gel plates with cracking, depending on boron content. Spectral and chemical analyses showed that the borosiloxane bond formation initiated during polymerisation reaction and is enhanced by heat treatment . 相似文献
15.
Porous phosphate-based glass ceramics prepared by the sol–gel method were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential thermal analysis (DSC). The 48CaO–45P2O5–2ZnO–5Na2O glassy system can remain fully amorphous up to 550 °C. After heat treated at 650 °C, the obtained porous bodies consisted of dense struts and macropores where β-Ca2P2O7 and Na2CaP2O7 phases crystallized from the glass matrix. When treated at 750 °C, Ca4P6O19 and NaZn(PO3)3 precipitated homogeneously as new phases among the residual glass matrix. The material was assessed by soaking samples in phosphate-based buffer solution (PBS) solution to determine the solubility and observe apatite formation. 相似文献
16.
Studies in superconducting properties of NbN–SiO2 films are reported. The films were obtained through nitridation of sol–gel derived Nb2O5–SiO2 coatings at 1200 °C, a process leading to the formation of disordered structures with NbN metallic grains dispersed in the insulating SiO2 matrix. Electrical resistivity was measured with the conventional four-terminal method in the temperature range from 5 to 280 K. The samples’ superconducting properties, examined with magnetically modulated microwave absorption (MMMA), depend on the NbN/SiO2 molar ratio and the film’s thickness. 相似文献
17.
Al2O3–ZrO2 (Y2O3) nanopowders containing 5, 10 and 15 wt% ZrO2 were synthesized by aqueous sol–gel method using aluminum sec-butoxide and zirconium butoxide as precursors. BET analysis shows that, increasing the zirconia content results in a decrease in surface area, 152, 125 and 121 m2/g, and an increase in pore size, 5.63, 9.79 and 11.05 nm for 5, 10 and 15 wt% ZrO2, respectively. Furthermore, a shift toward higher temperatures is observed for transition of transitional aluminas to stable α-alumina phase through increasing the zirconia content. SEM micrograph of calcined nanopowders revealed nanosize spherical particles in the range of 15–75 nm. 相似文献
18.
Leda M. Saragiotto Colpini Giane G. Lenzi Creusa M. Macedo Costa 《Journal of Non》2008,354(42-44):4816-4822
The presence of Lewis and Brønsted acid sites in calcined mixed oxides 10% V2O5/SiO2, 10% V2O5/TiO2, and 10% V2O5/Al2O3 obtained by sol–gel method was determined through infrared spectroscopy using pyridine as a molecular probe. Texturally, they are formed by mesopores and present high specific surface area and controlled porosity. Scanning electron microscopy revealed that vanadium is homogeneously distributed in the materials. The infrared spectra of samples submitted to different temperatures after the absorbance of pyridine were obtained. The existence of active metal ions on the surface of the materials was evidenced by the presence of Lewis and Brønsted acid sites, which confers them potential catalytic properties. 相似文献
19.
Nanocrystalline 1%, 2% and 4% Cobalt-doped TiO2 were prepared by sol–gel technique, followed by freeze-drying treatment at ?30 °C temperature for 12 h. The obtained gels were thermally treated at 200, 400, 600 and 800 °C. X-ray Powder Diffraction (XRD), Scanning Electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDAX) were used to study its structural properties. The XRD pattern shows the coexistence of anatase phase and minor brookite phase. UV–vis Spectroscopy and Photoluminescence (PL) were used to study its optical properties. Optical band gap was calculated with the incorporation of different concentrations of cobalt. UV–visible spectroscopy shows variation in band gap for the sample treated at different temperatures for same concentration. All Cobalt doped TiO2 nanostructures show an appearance of Red shift relative to the bulk TiO2. The determination of magnetic properties was also carried out by Gouy balance method. 相似文献