首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B. Kościelska  A. Winiarski  B. Kusz 《Journal of Non》2009,355(24-27):1342-1346
The results of investigations of electrical conductivity and the structure of NbN–TiN thin films in a different NbN/TiN molar ratio are presented in this work. Sol–gel derived xNb2O5?(100?x)TiO2 coatings (where x = 100, 90, 80, 70, 60, 50, 40, 0 mol%) were nitrided at 1200 °C to obtain NbN–TiN films. The structural transformations occurring in the films as a result of ammonolysis were studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The electrical conductivity was measured with a conventional four-terminal method in the temperature range of 5–280 K. The NbN–TiN samples exhibited a negative temperature coefficient of resistivity. The positive temperature coefficient of resistivity was observed only for the x = 0 sample. The results of conductivity versus temperature may be described on the grounds of a model proposed for a weakly disordered system. The film thickness effect on the superconducting properties was studied for x = 80 and x = 100 samples. The superconducting transition was not observed in all samples, the exception was x = 80 sample, 1050 nm in thickness. It is not clear, why all x = 100 samples do not exhibit superconducting transition in resistivity measurements. It seems to be possible, that the Josephson junction formation between NbN grains could be blocked by non-superconducting phases present in these samples.  相似文献   

2.
《Journal of Non》2007,353(32-40):3196-3199
We report on structural properties and the resistivity of amorphous (In50Sb50)100−xAux (0 < x < 80). Immediately after deposition at T = 4 K the static structure was measured by electron diffraction and the resistivity by a four-probe technique. The structural data can be described as induced by a resonance effect (Hume–Rothery-, Peierls-like) between the electronic system and the forming static structure. If the electronic system is changed, the structure adjusts to the new situation. With increasing Au-content (shrinking the Fermi-sphere diameter), for example, a resonance-induced structural peak at 2kF shifts to lower scattering values. By analyzing the static structure in even more detail, indications of angular correlations appear, quite similar as has been observed in amorphous precursor alloys of quasicrystals. After deposition the resistivity is quite large at the In50Sb50 – rich side. Annealing alloys with x > 0 gives a sharp decrease by roughly 10% around T = 160 K which is interpreted as a separation into two amorphous phases. One which is In50Sb50 – rich or may even consist of pure In50Sb50, and another one which is enriched by Au. Around T = 300 K there is a second resistivity drop, interpreted as the crystallization of a spherically-periodic ordered Au-rich metallic phase which itself can be described as a so-called amorphous Hume–Rothery phase, stabilized by the electronic system.  相似文献   

3.
S. Azianty  A.K. Yahya  M.K. Halimah 《Journal of Non》2012,358(12-13):1562-1568
Ternary tellurite glasses with the chemical formula 80TeO2–(2 ? x)ZnO–xFe2O3 (x = 0–15 mol%) have been prepared by the melt-quenching method. Elastic and structural properties of the glasses were investigated by measuring both longitudinal and shear velocities using the pulse-echo overlap method at 5 MHz and Fourier transform infrared (FTIR) spectroscopy, respectively. Both longitudinal and shear velocity showed a large increase of 3.40% and 4.68%, respectively, at x = 5 mol% before a smaller increase for x > 5 mol%. Interestingly, longitudinal modulus (L), shear modulus (G), bulk modulus (K) and Young's modulus (E) recorded similar trends with increase in Fe2O3. The initial large increases in shear and longitudinal velocity and related elastic moduli observed at x = 5 mol% are suggested to be due to structural modification which enhances rigidity of the glass network. FTIR analysis showed increase in bridging oxygen (BO) as indicated by the relative intensity of the TeO4 assigned peaks and increase in intensity of the FeO6 assigned peak (~ 451 cm? 1) which indicates that Fe acts as a modifier in the glass network. The increase in rigidity of the glass system is suggested to be due to the increase of BO together with the formation of strong covalent FeO bond. Quantitative analysis based on the bulk compression and ring deformation models showed that the kbc/kexp value decreased gradually from 2.41 (x = 0 mol%) to 2.02 (x = 15 mol%) which infers that the glass system became a relatively more open 3D network as Fe2O3 was increased.  相似文献   

4.
《Journal of Non》2007,353(13-15):1474-1477
Se–Te alloys are an important system of chalcogenide glasses from application point of view. The incorporation of Sn additive alters the electrical properties of these alloys. The conductivity measurements have been done on the thin films of a-Se85−xTe15Snx (x = 0, 2, 4, 6 and 10 at.%) deposited using vacuum evaporation technique. Both dark (σd) and photoconductivity (σph) show a maximum for x = 6 at.% of Sn, which, decreases on further Sn addition to the binary Se–Te alloy. The dark activation energy (ΔEd) shows a minimum for x = 2 at.% of Sn, but increases on further Sn addition. There is a sharp decrease in photosensitivity (σph/σd) on Sn addition to Se85Te15 alloy. The charge carrier concentration (nσ) calculated with the help of dc conductivity measurements also show a maximum at x = 6 at.% of Sn. The results are explained on the basis of increase in the density of localized states present in the mobility gap on Sn incorporation.  相似文献   

5.
In the present report, ionic transport properties and microstructural investigations of superionic materials in a cost-effective glassy system xCuI–(100 ? x)[2Ag2O–0.7V2O5–0.3B2O3], where x = 30, 40, 45, 50 and 60, have been described. The temperature dependent electrical conductivity studies were carried out by ac impedance analysis. The microstructure of the materials studied by SEM indicated the presence of dispersed CuO and AgI micro-crystals in the silver oxysalt glass matrix. High room temperature electrical conductivity of 3.58 × 10?3 S cm?1 and low activation energy of 0.24 eV were obtained for the best conducting composition. The ac impedance data were analyzed using impedance and modulus formalisms. These materials show extremely high ti value of 0.999 and the ionic conductivity is apparently due to Ag+ ions only. The use of two glass formers helped to form materials with higher Tg, higher thermal stability and better ionic transport properties.  相似文献   

6.
《Journal of Non》2007,353(8-10):893-895
In this report, we study the effect of Cr addition on the dc an ac magnetic properties of novel melt spun amorphous Co43−x/2Fe20−x/2CrxB31.5Ta5.5 (x = 0, 1, 2, 4) alloy series. The saturation magnetization decreases with increasing Cr content as well as the ac relative initial permeability, which showed a high relaxation frequency of 3 MHz. In addition, the magnetoimpedance effect was detected in this alloy series, with a maximum variation ratio of 3% at x = 0.  相似文献   

7.
The compositional dependence of the glass forming ability (GFA), the correlation between their GFA and the GFA related parameters, and the thermal stability of the Ce–Al–Ni alloys were investigated. Rapidly quenched Ce65AlxNi35 ? x (x = 2, 5, 10, 17, 20) and Ce70AlxNi30 ? x (x = 2, 5, 10, 15, 20) ribbons were prepared by melt spinning, and their phase transformations were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The experimental results indicated that the GFA of Ce65AlxNi35 ? x (x = 2, 5, 10, 17, 20) and Ce70AlxNi30 ? x (x = 2, 5, 10, 15, 20) alloys increased firstly and then decreased with the increasing of the Al content up to 20 at.%, respectively. It was found that only one parameter, F1, in evaluated currently available empirical GFA parameters searching for metallic glasses with a good GFA, can reflect the GFA of the Ce–Al–Ni alloys. It was indicated that the thermal stability of alloy with fully amorphous maybe lower than that of alloy with partial amorphous.  相似文献   

8.
《Journal of Non》2006,352(26-27):2737-2745
Electrical properties of A2.6+xTi1.4−xCd(PO4)3.4−x (A = Li, K; x = 0.0–1.0) phosphate glasses are investigated over a frequency range from 42 Hz to 1 MHz at different temperatures. Impedance spectroscopy is used to separate the bulk conductivity from electrode effect of electrical conductivity data. The bulk dc conductivity is Arrhenius activated, with activation energies and pre-exponential factors following the Meyer–Neldel rule. The real part of ac conductivity shows universal power law feature. The variation of dielectric constant with frequency is attributed to ion diffusion and polarization occurring in the phosphate glasses. The frequency dependent imaginary part of electric modulus M″(ω) plot shows non-Debye feature in conductivity relaxation. The Kohlrausch–Williams–Watts stretched exponential function was used to describe the modulus spectra and the stretching exponent β is found to be temperature independent. Scaling in M″(ω) shows that the electrical relaxation mechanisms are independent of temperature for given composition at different temperatures.  相似文献   

9.
Fast ion conducting (FIC) phosphate glasses have become very important due to a wide range of applications in solid-state devices. We present an overview on silver based fast ion conducting phosphate glasses. Silver phosphate glasses containing chlorides of some metals viz; Li, Na, Mg, Pb and Cu [Ag2O–P2O5xMCly, where x = 0, 1, 5, 10 and 15 wt% and y = 1 when M = Li or Na and y = 2 when M = Mg, Pb or Cu] have been synthesized by melt quenching technique. Studies on these glassy materials characterized by X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetric techniques and ion transport measurements are presented. The FT-IR studies support the formation of P–O–M linkages. The values of glass transition temperature (Tg) of the glassy materials containing lithium or sodium chloride have been found to decrease with increasing dopant concentrations indicating expansion of the glassy network. On the other hand, the Tg values increase with increasing magnesium, lead or copper chloride concentrations in silver phosphate glasses. This indicates an increase in cross–link density and enhanced chemical durability of these glassy materials. Ion transport studies suggest that the values of electrical conductivities of the metal chloride doped glassy materials are higher than those of the undoped ones and, at a particular dopant concentration, the following trend is observed.σ (–LiCl)  σ (–NaCl) > σ (–MgCl2) > σ (–PbCl2) > σ (–CuCl2)These results are supported by the experimental results of FT-IR spectral and thermal studies.  相似文献   

10.
《Journal of Non》2007,353(13-15):1354-1357
CuO-doped barium borophosphate glasses in a series of xCuO–(45  x)BaO–10B2O3–45P2O5 in molar ratio with x = 0–15 mol% were prepared by a melt-quenching technique. All the glasses had excellent thermal stability against crystallization. Glass transition temperature, thermal expansion coefficient and molar volume decrease with increasing CuO concentration. The linear relationship between the absorption coefficient and CuO concentration exists for a peak wavelength in the transitions of 2A1g  2B1g, 2B2g  2B1g, 2Eg  2B1g. The relationship between the properties and glass structure evaluated by Raman spectroscopy is discussed.  相似文献   

11.
Potassium-lithium niobiosilicate (KLiNS) glasses with a composition of (27 ? x)K2O · xLi2O · 27Nb2O5 · 46SiO2 (x = 0, 3, 12 and 20) have been synthesized by a melt-quenching method. The glass structure and devitrification behavior have been studied by Raman spectroscopy, DTA, and XRD. By increasing the lithium content, less distorted niobium octahedra increase, indicating a niobium clustering. This change strongly affects the crystallization behavior. In the glasses x = 0 and x = 3, just above Tg, only nanocrystals of an unidentified phase are formed, while for x = 12 and x = 20 potassium lithium niobate (KLN) solid solutions with tetragonal tungsten–bronze structure crystallize by bulk nucleation. In these glasses, LiNbO3 crystallizes at higher temperature by surface nuclei. Ultimately, it is possible to produce nanostructured glasses based on KLN nanocrystals, by partial replacement of K by Li.  相似文献   

12.
Bulk Fe80?xMoxP10C7.5B2.5 (x = 5–10 at.%) metallic glasses are synthesized by copper mold casting, which have a critical diameter up to 3 mm, fracture strength over 3000 MPa, plastic strain up to 2.5% and saturation magnetization reaching 1.1 T. Results show that the glass forming ability and strength increase with increasing Mo content, while the plasticity and saturation magnetization do otherwise. These Mo content dependent properties are illuminated with the atomic interactions in the alloys that could be strengthened by suitable addition of Mo element. The effects of Mo on the properties of the alloys imply that proper Mo element should be chosen in designing Fe-based glassy alloys with desired properties.  相似文献   

13.
Glass samples have been prepared in the NaPO3–KHSO4 binary system with the classical melting, casting and annealing steps. Electrical and dielectrical properties of glass samples were studied. Measurements of DC and AC conductivity and complex electrical permittivity of xNaPO3–(100 ? x)KHSO4 glass system were carried out at temperatures ranging from room temperature to temperature located 15 °C below glass transition temperature Tg. Results showed that changes of NaPO3 concentration considerably affect values of observed parameters. DC conductivity of glass increases as NaPO3 concentration grows until concentration x = 60. However, beyond this value a sharp decrease of DC conductivity was observed. In addition relaxation times showed abrupt changes at concentration x = 60, corresponding to the lowest relaxation times at the temperature 90 °C.  相似文献   

14.
In order to crystallize a large quantity of the lithium?mica in glass?ceramics, 5.1 mass% MgF2 was added to the starting materials of the parent glasses having chemical compositions of Li(1+x)Mg3AlSi3(1+x)O10+6.5xF2 (x = 0.5 and 1.0). Transparent glass?ceramics, in which a large quantity of lithium?mica with particle size of <50 nm was separated, could be prepared from the MgF2-added parent glass with x = 0.5. While the parent glass, which had a binodal phase separation structure, did not exhibit electrical conductivity, the transparent glass–ceramic was given conductivity by the formation of an interlocking structure of mica. As the separated mica formed a tighter interlocking structure, the conductivity increased and reached a value of 2.0 × 10?3 S/cm at 600 °C. The MgF2-added parent glass with x = 1.0 was not transparent because of coarse spinodal phase separation. The conductivity was 4.3 × 10?4 S/cm at 600 °C but was significantly decreased by the separation of mica.  相似文献   

15.
The structures of the full series of alkali borate glasses (M2O)x(B2O3)1?x (M = Li, Na, K, Rb and Cs) at two different concentrations, x = 0.14 and x = 0.30, have been investigated by means of molecular dynamics simulations. Additional compositions have also been investigated for the lithium and caesium borate glasses (x = 0.10, 0.20, 0.25, and 0.40). The main experimental trends are well reproduced by the simulations, even if the agreement is not quantitative. Our results indicate that lithium atoms can enter into the matrix of pure vitreous B2O3 without inducing large modifications in the B–O network, even at large concentrations. However when the other alkali ions are added to the initial structure, the network opens to accommodate the larger size of the cation. These modifications induce the appearance of a low-Q shoulder or pre-peak, whose intensity increases with increasing alkali concentration as well as with increasing alkali size.  相似文献   

16.
《Journal of Non》2007,353(13-15):1337-1340
The preparation of mixed glasses of As2S3−xSex (x = 0–3) and (1  y) · As2S3y · Sb2S3 (y = 0–1) has been carried out by an in situ pouring technique. X-ray diffraction (XRD) was used to confirm the glassy nature of the materials and monitor devitrification. Visible-IR transmission, photoluminescence, refractive index and micro-Raman were measured as a function of composition. Microhardness (MH) and thermal expansion coefficient (TEC) were also measured. Raman peaks in As2S3 and As2Se3 were observed around 338 cm−1 and 230 cm−1, respectively in this first composition series in which S was replaced by Se. When As was replaced by Sb, in the case of second composition series, the As2S3 related Raman peak became broader and shifted to lower wave number, reflecting some structural change/devitrification. MH increased (1.31–1.50 GPa) with Se and Sb content while the TEC was found to decrease (2.5–1.4 × 10−5/K). The progressive increase in the content of either Se or Sb in As2S3 is anticipated to modify bond lengths and bond angles. The combined effect of these structural modifications would change the local structure of the glass forming a more rigid glass network thereby increasing the hardness and decreasing TEC.  相似文献   

17.
《Journal of Non》2007,353(47-51):4395-4399
The electrical properties of (40−x)ZnO–xFe2O3–60P2O5 (x = 10, 20, 30 mol%) glasses were measured by impedance spectroscopy in the frequency from 0.01 Hz to 4 MHz and the temperature range from 303 to 473 K. It was shown that the dc conductivity strongly depends on the Fe2O3 content and Fe(II)/Fetot ratio. The increase in dc conductivity for these glasses is attributed to the increase in Fe2O3 content from 10 to 30 mol%. With increasing Fe(II) ion content from 6% to 17% the dc conductivity increases. This indicated that the conductivity arises mainly from polaron hopping between Fe(II) and Fe(III) ions suggesting an electron conduction in these glasses. By applying scaling on conductivity data measured at different temperatures, single master curve was obtained for each glass. On the other hand, deviation from the master curve at high frequencies was observed for glasses with different compositions. This deviation originates from a various mobility of charge carriers in different glass structures. Raman spectra showed the change of structure, from metaphosphate to pyrophosphate, with increasing Fe2O3 content from 10 to 30 mol%.  相似文献   

18.
Dysprosium doped GexGa5Se(95?x) (x = 15–30) chalcogenide glasses were synthesized in this present work. The Vis–NIR transmission spectra, photoluminescence spectra and lifetime were measured. Glasses (x = 27.5, 29.17 and 30) doped with 0.2 wt% dysprosium ions shows relatively strong emission bands at 1146 and 1343 nm when pumped at 808 nm. The emission lifetime ranged from 440 to 540 μs. The oscillator strengths and intensity parameters Ωt (t = 2, 4 and 6) were calculated using Judd–Ofelt theory.  相似文献   

19.
MgxZn1?xO thin films were deposited on quartz substrates by RF magnetron sputtering. The effect of post-annealing temperature on structural, optical, and electrical properties was investigated with the annealing temperatures increasing from 450 to 750 °C. The crystallinity of MgxZn1?xO film annealed at 650 °C was significantly improved while the film annealed at 750 °C showed little improvement. The electrical properties degraded with the increase of annealing temperature. The annealing temperature seemed to impact the Eg value of MgxZn1?xO thin films because of the variation of carrier concentration.  相似文献   

20.
《Journal of Non》2007,353(22-23):2125-2130
Polycrystalline single phase of Pb1−xSmxSe (x = 0.00–0.09) samples were prepared by the solid state reaction. XRD and SEM/EDAX methods were used for structural and chemical characterization of the obtained materials. The investigated samples were also characterized by the measurements of the samarium concentration dependence of the electrical conductivity and Seebeck coefficient. The power factor shows that these materials have the potential for high temperature applications with promising thermoelectric performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号