首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chalcogenide bulk glasses Ge20Se80−xTex for x(0,15) have been prepared by systematic replacement of Se by Te. Selected glasses have been doped with Ho, Er and Pr, and samples have been characterized by transmission spectroscopy, measurements of dc electrical conductivity and low-temperature photoluminescence. Absorption coefficients have been derived from measured transmittance and estimated reflectance. Arrhenius plots of dc electrical conductivity, in the measured temperature range 300–460 K, are characterized by single activation energies roughly equal to the half of the optical gap. Activation energies deduced from Arrhenius plots reveal a systematic decrease with increasing Te content. Similarly, both absorption and low-temperature photoluminescence spectra reveal shifts of absorption edge and/or dominant luminescence band to longer wavelength due to Te → Se substitution. Samples doped with Ho and Er exhibit a strong luminescence at 1200 and 1540 nm due to 5I6 → 5I8 and 4I13/2 → 4I15/2 transitions of Ho3+ and Er3+ ions, respectively. Pr doped samples exhibit only a relatively weak luminescence peak at 1590 nm, which we tentatively assign to 3F3 → 3H4 transition of Pr3+ ions. Absorption of the base glass luminescence at 1460 and 1520 nm has been observed at low temperature on samples doped with Pr and Er, respectively.  相似文献   

2.
3.
Bi–Er–Tm co-doped germanate glasses and Bi, Er, Tm singly doped glasses were prepared and characterized through absorption spectra, NIR emission spectra and decay lifetime. A super broadband near-infrared emission from 1000 nm to 1600 nm, covering the whole O, E, S, C, and L bands, was observed in the Bi–Er–Tm co-doped samples due to the result of the overlapping of the Bi related emission band (centered at 1300 nm), the emission from Er3+ 4I13/2  4I15/2 transition (centered at 1534 nm) as well as the emission from Tm3+ 3H4  3F4 transition (centered at 1440 nm), which is essential for broadly tunable laser sources and broadband optical amplifiers. The energy transfer process was also discussed at the end of the paper.  相似文献   

4.
《Journal of Non》2007,353(13-15):1330-1332
We have studied the absorption and photoluminescence (PL) of (GeS2)80(Ga2S3)20 glasses doped with 0.17, 0.35 and 1.05 at.% Er. The sharp bands centered at around 660, 810, 980 and 1540 nm in the absorption spectra can be associated with intra 4f-shell transitions in Er3+ ions from 4I15/2 level to 4F9/2, 4I9/2, 4I11/2 and 4I13/2 levels, respectively. It has been observed that the absorption edge shifts towards lower energies with increasing Er concentration. A decrease in the absorption coefficient in the range of weak absorption, as well as the host luminescence in more heavily doped samples has been established, which may be associated with less native defects in the glassy structure. The role of excitation wavelength (λex) on the PL emission band at 1540 nm using different Er3+-doping level has been evaluated. It has been found that the total PL band remains almost the same under direct excitation of Er3+ ions (at λex = 644, 770 and 982 nm), while it becomes narrower under the host excitation (at λex = 532 nm).  相似文献   

5.
Z.G. Ivanova  J. Zavadil  K.S.R.K. Rao 《Journal of Non》2011,357(11-13):2443-2446
The influence of temperature and glass composition on the photoluminescence (PL) efficiency of Er3+ ions embedded in (GeS2)100?x(Ga2S3)x (x = 20, 25 and 33 mol%) glasses has been studied. The typical 4f–4f emission bands of Er3+ ions at around 830, 1000 and 1550 nm have been observed in the whole investigated temperature range from 300 K down to 10 K for all the compositions. New 4f–4f luminescence bands, in excess of the three basic ones, have been observed at 670, 870, 1120, 1260 and 1350 nm for (GeS2)75(Ga2S3)25 glass composition, and are tentatively assigned to 2H9/2  4I11/2, 4G11/2  4F9/2, 2H11/2  4I11/2, 4F7/2  4I9/2 and 4F3/2  4I9/2 transitions, respectively. Thus a considerable influence of GeGaS host composition on the efficiency of 4f–4f transitions of embedded Er3+ ions is documented with the outcome that (GeS2)75Ga2S3)25 composition appears near optimal for the emission efficiency of Er3+ ions. With decreasing temperature the PL efficiency is enhanced considerably with pronounced narrowing of all bands. In the case of the strongest PL band at ~ 1550 nm, corresponding to 4I13/2  4I15/2 transition, the narrowing at low temperature is further accompanied by the resolution of well pronounced fine structure due to “crystal field” splitting of corresponding electronic terms. The relationship between the photoluminescence and reflectance spectra as a function of Er content has been discussed.  相似文献   

6.
Transparent SiO2:Li2O:Nb2O5 glass doped with Tm3+ has been prepared by the sol–gel method, and heat-treated in air (HT) at temperatures between 500 and 800 °C. X-ray diffraction (XRD) patterns and Raman spectroscopy show SiO2 and LiNbO3 phases in samples HT above 650 °C, and a NbTmO4 phase for T > 750 °C. The XRD SEM analysis show increasing particle size and number with the increase of HT temperature. Intra-4f12 transitions due to Tm3+ ion dispersed in the matrix are observed in samples with T > 650 °C. The luminescence is dominated by the 1G4  3F4 (~650 nm), 1D2  3F3 (~780 nm), 3H4  3H6 (~800 nm), 3H5  3H6 (~1200 nm) and 3H4  3F4 (~1500 nm) transitions under resonant excitation to the ion levels.  相似文献   

7.
《Journal of Non》2007,353(13-15):1354-1357
CuO-doped barium borophosphate glasses in a series of xCuO–(45  x)BaO–10B2O3–45P2O5 in molar ratio with x = 0–15 mol% were prepared by a melt-quenching technique. All the glasses had excellent thermal stability against crystallization. Glass transition temperature, thermal expansion coefficient and molar volume decrease with increasing CuO concentration. The linear relationship between the absorption coefficient and CuO concentration exists for a peak wavelength in the transitions of 2A1g  2B1g, 2B2g  2B1g, 2Eg  2B1g. The relationship between the properties and glass structure evaluated by Raman spectroscopy is discussed.  相似文献   

8.
Strong blue-green light emitting Eu doped SrAl2O4 phosphor was synthesized by a low-temperature initiated, self-propagating and gas producing combustion process in a very short time (<5 min). The prepared powder was characterized by X-ray diffraction, Fourier-transform infrared spectrometry and scanning electron microscopy. The excitation spectrum shows a peak at 397 nm. Upon excitation at 397 nm, the emission spectrum exhibits a well defined broad band with maximum at 493 nm corresponding to 4f65d  4f7 transition. Electron paramagnetic resonance (EPR) measurements at X-band showed low field signals due to Eu2+ ions in SrAl2O4:Eu.  相似文献   

9.
The V–VI group narrow band gap compounds are known to have important photoconductivity and thermoelectric properties. Among these, Bi2Te3 is the most potential material for thermoelectric devices having a direct band gap of 0.16 eV. There has been ample study reported on crystal growth and polycrystalline thin films of both pure and indium doped Bi2Te3 pertaining to its basic semiconducting, optoelectronic and thermoelectric properties. It has been shown that on exceeding certain limiting concentration of indium in Bi2Te3, the conductivity changes from p-type to n-type. However, there is hardly any work reported in literature on crystal growth, dislocation etching and optical band gap of InxBi2?xTe3 (x=0.1, 0.2, 0.5) single crystals. The authors have grown their single crystals using the zone melting method. The freezing interface temperature gradient of 70 °C/ cm?1 has been found to yield the best quality crystals obtainable at the growth rate of 0.4 cm/h. The as-grown crystals have been observed to exhibit certain typical features on their top free surfaces. The crystals have been characterized using XRD technique. A chemical dislocation etchant has been used for estimating perfection in terms of dislocation density in the crystals. The optical absorption was measured in the wave number range 500 to 4000 cm?1. The transitions in all the cases were observed to be allowed direct type. The detailed results are reported in the paper.  相似文献   

10.
《Journal of Non》2007,353(13-15):1247-1250
Electrical switching and differential scanning calorimetric studies are undertaken on bulk As20Te80−xGax glasses, to elucidate the network topological thresholds. It is found that these glasses exhibit a single glass transition (Tg) and two crystallization reactions (Tc1 & Tc2) upon heating. It is also found that there is only a marginal change in Tg with the addition of up to about 10% of Ga; around this composition an increase is seen in Tg which culminates in a local maximum around x = 15. The decrease exhibited in Tg beyond this composition, leads to a local minimum at x = 17.5. Further, the As20Te80−xGax glasses are found to exhibit memory type electrical switching. The switching voltages (VT) increase with the increase in gallium content and a local maximum is seen in VT around x = 15. VT is found to decrease with x thereafter, exhibiting a local minimum around x = 17.5. The composition dependence of Tc1 is found to be very similar to that of VT of As20Te80−xGax glasses. Based on the present results, it is proposed that the composition x = 15 and x = 17.5 correspond to the rigidity percolation and chemical thresholds, respectively, of As20Te80−xGax glasses.  相似文献   

11.
Confocal microscopy luminescence measurements were applied to study the X-ray radiation response of Er/Yb-doped optical fibers in connection with H2 pre-loading and with the addition of another lanthanide element (Cerium) in the core composition. Laser excitations at 488 nm and 325 nm allow deriving the emission and absorption pattern of Er3+, the latter derived from the dips appearing in a wide luminescence band related to defects in silica. We found that the luminescence spectrum of the X-irradiated Er/Yb-doped core fiber evidences an increase in the emission intensity around 520 and 660 nm; in contrast, no changes are induced by radiation neither after H2 pre-loading nor when the Cerium is added to the core composition. Both treatments reduce the generation of defects in the Er-doped fibers thus providing hardness in the radiative environment.  相似文献   

12.
《Journal of Non》2006,352(32-35):3628-3632
This paper presents the optical characterization of Nd3+ lead silicate glasses (SiO2–Na2CO3–PbO–ZnO), synthesized by means of the fusion method. Absorption, luminescence, lifetime and Raman spectroscopy measurements were performed in order to determine the radiative properties of the glasses. The near infrared luminescence exhibited the typical Nd3+ bands, particularly the band at 1060 nm (4F3/2  4I11/2). The calculated branching ratios for the 4F3/2 level are: β (9/2) = 35%, β (11/2) = 55%, β(13/2) = 9.5% and β (15/2) = 0.5%. The estimated quantum efficiency was about 90%, based on comparison with the Judd Ofelt theory and experimental lifetime measurements.  相似文献   

13.
《Journal of Non》2007,353(16-17):1508-1514
This paper reports on the spectroscopic properties and energy transfer in Ga2O3–Bi2O3–PbO–GeO2 glasses doped with Tm3+ and/or Ho3+. From the optical absorption spectra of Tm3+, Judd–Ofelt intensity parameters, radiative transitions probabilities, fluorescence branching ratios, and radiative lifetimes have been calculated using Judd–Ofelt theory. The measured differential scanning calorimetry result shows that the glass exhibits excellent stability against devitrification with ΔT = 129 °C. The measured luminescence spectra show that the 3H4  3F4 transition of Tm3+ upon 808 nm laser diode excitation possess a broad full width at half-maximum of ∼126 nm. The maximum value calculated stimulated emission cross-section and the measured lifetime of 3H4 level from the 1.47-μm transition are ∼4.73 × 10−21 cm2 and ∼0.239 ms, respectively. It is noticed that codoping of Ho3+ could significantly enhanced the ratio of the intensity of 1.47–1.80 μm by energy transfer via Tm3+: 3F4  Ho3+: 5I7.  相似文献   

14.
《Journal of Non》2007,353(24-25):2355-2362
EPR and optical absorption spectra of 0.5 mol% MnO2 doped xLi2O–(30  x)Na2O–69.5B2O3 (5  x  25) glasses have been studied. The EPR spectra exhibit resonance signals characteristic of Mn2+ ions. The resonance signal at g  2.0 is due to Mn2+ ions in an environment close to octahedral symmetry, whereas the resonances at g  4.3 and g  3.3 are attributed to the rhombic surroundings of the Mn2+ ions. The ionic character (A), the number of spins participating in resonance (N), optical band gap energies (Eopt) and Urbach energies (ΔE) show the mixed alkali effect (MAE) with composition. The present study gives an indication that the size of alkalis we choose, is also an important contributing factor in showing the MAE. The variation of N with temperature obeys the Boltzmann law. The optical absorption spectra show a single broad band at ∼21 000 cm−1 corresponding to the transition 6A1g(S)  4T1g(G) which exhibits a blue shift with x. The theoretical values of optical basicity (Λth) have also been evaluated.  相似文献   

15.
Nanoindentation studies on Ge15Te85 ? xInx glasses indicate that the hardness and elastic modulus of these glasses increase with indium concentration. While a pronounced plateau is seen in the elastic modulus in the composition range 3  x  7, the hardness exhibits a change in slope at compositions x = 3 and x = 7. Also, the density exhibits a broad maximum in this composition range. The observed changes in the mechanical properties and density are clearly associated with the thermally reversing window in Ge15Te85 ? xInx glasses in the composition range 3  x  7. In addition, a local minimum is seen in density and hardness around x = 9, the chemical threshold of the system. Further, micro-Raman studies reveal that as-quenched Ge15Te85 ? xInx samples exhibit two prominent peaks, at 123 cm? 1 and 155 cm? 1. In thermally annealed samples, the peaks at 120 cm? 1 and 140 cm? 1, which are due to crystalline Te, emerge as the strongest peaks. The Raman spectra of polished samples are similar to those of annealed samples, with strong peaks at 123 cm? 1 and 141 cm? 1. The spectra of lightly polished samples outside the thermally reversing window resemble those of thermally annealed samples; however, the spectra of glasses with compositions in the thermally reversing window resemble those of as-quenched samples. This observation confirms the earlier idea that compositions in the thermally reversing window are non-aging and are more stable.  相似文献   

16.
《Journal of Non》2007,353(13-15):1364-1371
The optical properties of GeGaSe glasses doped with Er by the addition of Er2S3 have been investigated. Optically uniform glasses have been prepared using stoichiometric compositions with 9–12 at.% Ga and doped with 0.5–2 at.% Er. The radiative lifetime of the 4I13/2  4I15/2 transition has been estimated to be equal to 1.78 ms using the Judd–Ofelt analysis. The photoluminescence lifetime distribution has been investigated in optimized glasses using Quadrature Frequency-Resolved Spectroscopy at room and liquid helium temperatures and at different emission wavelengths. All lifetime distributions were found to be sharp peaks centered at ∼2 ms. A radiation diffusion model has been used to understand the discrepancy between measured photoluminescence spectra and those predicted by the McCumber theory. The model predicts a radiative lifetime of the 4I13/2  4I15/2 transition to be around 1.72 ms and a much longer non-radiative lifetime. These results assume quasi-uniform distribution of Er3+ ions with negligible concentration-self-quenching and negligible rate of non-radiative relaxation from 4I13/2 to 4I15/2.  相似文献   

17.
P.K. Hung  N.T.T. Ha  N.V. Hong 《Journal of Non》2012,358(14):1649-1655
We perform a molecular dynamic simulation to study the diffusion mechanism in silica liquid under pressure up to 25 GPa and at temperature of 3000 K. We find that total O―Si―O angle distribution can be expressed by a simple relation between partial O―Si―O angle distribution and fractions of units SiOx. Specifically, we demonstrate that these liquids consist of identical units SiO4, SiO5 and SiO6 and have common partial O―Si―O angle distribution. We also show that each particle undergoes a series of stages where the particle locates in unchanged unit SiOx, x = 3, 4, … 7 or OSiy, y = 1, 2, 3, 4. The diffusivity strongly depends on the rate of transitions Siξ  Siξ ± 1 and Oζ  Oζ ± 1 which is significantly different between low- and high-pressure samples. For low-pressure sample the transitions Si4  Si5, Si5  Si4, O2  O3 and O3  O2 are dominant, meanwhile for high-pressure sample there are transitions Siξ  Siξ ± 1 with ξ = 4, 5, 6 and Oζ  Oζ ± 1 with ζ = 2, 3, 4. This finding may be common for diffusion in all network-forming liquids. The simulation also reveals the spatially heterogeneous dynamics in low-pressure liquid where a large cluster of immobile particle exists for the time that a number of particles move over several inter-particle distances.  相似文献   

18.
《Journal of Non》2006,352(23-25):2657-2661
Germanate glasses were prepared by the melt-quenching method using an assembled hot-thermocoupler equipped in a sample chamber of a fluorescence spectrometer, and subsequently their luminescence and excitation spectra were measured. In the GeO2 glass, luminescence bands due to the Ge2+ center appeared at the central wavelengths of 300 and 395 nm, their excitation bands being at 250 and 330 nm, respectively. In the (100  x)GeO2  xMmOn glasses, for MmOn = B2O3 (x  50), SiO2 (x  40), and Al2O3 (x  2), the luminescence intensity and therefore the amount of the Ge2+ center increased with increasing the content of MmOn, where M(2n/m)+ ions (B3+, Si4+, and Al3+) have lower basicities than a Ge4+ ion. Contrarily, for MmOn = Li2O (x  30), Na2O (x  20), K2O (x  20), CaO (x  20), SrO (x  3), BaO (x  15), ZnO (x  20), Ga2O3 (x  10), Sb2O3 (x  20), Bi2O3 (15  x  25), TiO2 (x  3), and Nb2O5 (x  10), the luminescence intensity and the amount of the Ge2+ center rapidly decreased with increasing the amount of additives and disappeared, where M(2n/m)+ ions (Li+, Na+, K+, Ca2+, Sr2+, Ba2+, Zn2+, Ga3+, Sb3+, Bi3+, Ti4+, and Nb5+) have higher basicities than a Ge4+ ion.  相似文献   

19.
《Journal of Non》2006,352(21-22):2213-2219
Luminescent materials based on the energy transfer effect consist of heteropolyoxometalates of the type K13[Eu(SiMoxW11−xO39)2] incorporated into xerogel matrices. Results of our experiments suggest that not only the composition parameter x (where x = 1, 3 and 5) of the salts with Eu(III) complex but also the type of the matrix influence the luminescent properties of these materials. The luminescent samples were characterized by such luminescence parameters as emission intensity, luminescence lifetime and quantum yield. The highest emission intensity of Eu(III) ions was exhibited by the salt with x = 1 incorporated into a silicate modified with 3-glycidoxypropyl groups. The longest lifetime was found in the material with a methylated silicate matrix with the same salt. For the complexed Eu(III) ions in these materials there is a correlation between emission intensity changes of the 5D0  7F2 band and the quantum yield. The materials with a high organic content in matrices such as the silicates with 3-glycidoxypropyl groups (either with closed or opened epoxy cycles) are more thermally unstable and they undergo larger photochemical degradation during exposure on UV radiation than the systems with limited organic content.  相似文献   

20.
《Journal of Non》2006,352(28-29):2969-2976
A colorless transparent luminescence material was successfully prepared by impregnation of leached, porous glass with Tb3+ ions followed by reductive sintering in a CO atmosphere. Tb3+ emissions under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation clearly showed the most intense emission band to be situated at 543 nm, which corresponds to the 5D4  7F5 transition. Sintering of the Tb glass in a reducing atmosphere resulted in a significant enhancement of Tb3+ emission intensity in comparison with sintering in air. The presence of traces of cerium ions was verified in Tb glasses, and more Ce3+ ions were produced as a result of the reductive sintering. The increase in Ce3+ ions was believed to be mainly responsible for the enhancement of 5D3  7Fj and 5D4  7Fj transitions from Tb3+ ions owing to an energy transfer channel. A clearly defined difference in the spectral energy distribution of Tb3+ emissions was found for 231 nm UV and 160 nm VUV excitation of the Tb glass. The phenomenon of cross relaxation was only observed under 231 nm UV excitation. Different excitation mechanisms were taken into account. Direct excitation of Tb3+ ions together with Ce3+ ions occurred in the Tb glass under the 231 nm UV light, whereas indirect excitation consisting of host absorption of energy and transfer from host to Tb3+ ions occurred under the 160 nm VUV light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号