首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The YAG nanopowders were prepared by a co-precipitation method using nitrate and ammonium hydrogen carbonate as raw materials. To obtain homogenous precipitate, reverse-strike (adding salt solutions to the precipitant solution) technique was adopted. Therefore, single (Tm3+) and codoped (Tm3+–Yb3+) YAG nanopowders with a size between 40–90 nm have been obtained.Blue upconversion emission at around 480 nm has been found in YAG: Tm3+ nanopowders under excitation to the 3H4 level of Tm3+ at around 800 nm. However, this upconversion emission in nanopowders codoped with Tm3+–Yb3+ ions is increased by a factor of about 10. The analysis of the temporal evolution of the involved levels and the dependence of the upconversion intensity on the pump power at 800 nm allowed to distinguish the upconversion mechanism. In YAG: Tm3+ nanopowders the upconversion mechanism is due to excited state absorption processes. However, in the codoped samples, Yb3+ ions acts as the sensitizers; in consequence, the blue upconversion is strongly increased.  相似文献   

2.
This work reports the observation of emissions at 2.9 μm, 1.8 μm and 1.47 μm from Dy3+/Tm3+ codoped fluorophosphate glass upon excitation of a conventional 800 nm laser diode. Judd–Ofelt intensity parameters and radiative properties of Dy3+ ions in present glasses were calculated using the Judd–Ofelt theory. The mechanism and microparameters of energy transfer processes were investigated based on photoluminescence performance and lifetime measurements. The Dy3+/Tm3+ codoped fluorophosphate glass possessing advantageous spectroscopic characteristics as well as excellent thermal stability is a promising candidate for an efficient 2.9 μm laser.  相似文献   

3.
An analysis of the intense blue upconversion emission at 476 and 488 nm in Tm3 +/Yb3 + codoped Y2O3 under excitation power density of 86.7 W/cm2 available from a diode laser emitting at 976 nm, has been undertaken. Fluorescence intensity ratio (FIR) variation of temperature-sensitive blue upconversion emission at 476 and 488 nm in this material was recorded in the temperature range from 303 to 753 K. The maximum sensitivity derived from the FIR technique of the blue upconversion emission is approximately 0.0035 K? 1. The results imply that Tm3 +/Yb3 + codoped Y2O3 is a potential candidate for the optical temperature sensor.  相似文献   

4.
Nd3+, Tm3+ and Yb3+ co-doped NaYF4 upconversion (UC) material was synthesized by the hydrothermal method. The structure of the sample was characterized by the X-ray diffraction, and its UC luminescence properties were investigated in detail. Under the 980 nm semiconductor laser excitation, its UC spectra exhibited distinct emission peaks at 451 nm, 475 nm and 646 nm respectively. On the basis of the comparison of UC spectra between NaYF4:Nd3+,Tm3+,Yb3+ and NaYF4:Tm3+,Yb3+, it was indicated that the existence of Nd3+ ion enhanced the blue emission intensity. The law of luminescence intensity versus pump power proved that the blue emission at 475 nm, and the red emission at 646 nm were the two-photon processes, while the blue emission at 451 nm was a three-photon process.  相似文献   

5.
Tm3+/Yb3+ codoped tellurite glass has been prepared. Density, refractive index, optical absorption, Judd-Ofelt parameters and spontaneous transition probabilities of Tm3+ have been measured and calculated, respectively. Intense blue three-photon upconversion fluorescence and S-band (1470 nm) fluorescence were investigated under the excitation of a 980 nm diode laser at room temperature. Judd-Ofelt parameters, strong blue three-photon upcoversion emission of Tm3+ in glass indicate that Tm3+/Yb3+ codoped tellurite glass is a promising blue color upconversion optical and laser material. In addition, experiment results showed the 980 nm laser was more efficient than 808 nm laser when pumping Tm3+/Yb3+ codoped tellurite glass, Tm3+/Yb3+ codoped tellurite glass also could be a promising material for S-band amplification.  相似文献   

6.
Er3+ and Tm3+ singly doped and codoped new fluoride glasses were prepared by traditional melt-quenching method. Efficient 3 μm emission was obtained under 980 nm laser excitation. It is worthy to notice that one of the two ions can be the sensitizer to the other one by depressing the Er3+: 1.5 μm emission through the energy transfer process from Er3+:4I13/2 level to Tm3+:3F4 level. On the basis of measured absorption spectra, the Judd-Ofelt intensity parameters and radiation emission probability were calculated to evaluate the spectroscopic properties. Additionally, the micro-parameters together with the phonon assistance of Er3+:4I13/2  Tm3+:3F4 and Er3+:4I11/2  Tm3+:3H5 processes were quantitatively analyzed by using Dexter model. The theoretical micro-parameters results meet well with the experiments which indicates that Er3+/Tm3+ codoped fluoride glass is a potential kind laser glass for 3 μm laser.  相似文献   

7.
Transparent phosphate glass ceramics co-doped with Er3+ and Yb3+ in the system P2O5Li2OCaF2TiO2 were successfully synthesized by melt-quenching and subsequent heating. Formation of the nanocrystals was confirmed by X-ray powder diffraction. Judd–Ofelt analyses of Er3+ ions in the precursor glasses and glass ceramics were performed to evaluate the intensity parameters Ω2,4,6. Under 975 nm excitation, intense upconversion (UC) and infrared emission (1545 nm) were observed in the glass ceramics by efficient energy transfer from Yb3+ to Er3+. The luminescence processes were explained and the emission cross section was calculated by Fuchtbauer–Ladenburg (F–L) formula. The results confirm the potential applications of Er3+/Yb3+ co-doped glass ceramics as laser and fiber amplifier media.  相似文献   

8.
The effect of Yb3 + concentration on the fluorescence of 12 CaO·7 Al2O3:Tm3 +/Yb3 + polycrystals is investigated. Under the excitation of 980 nm laser, the strong blue (477 nm) emission band is observed and attributed to 1G4  3H6 of Tm3 +. The ratio of blue to red emission increases with the increasing of Yb3 + and remains constant at 10 mol% Yb3 +. The pump dependence and upconversion mechanisms show that the two-photon cooperative upconversion process is responsible for the enhancement of the blue upconversion emission. The Commission Internationale de l'eclairage chromaticity coordinates (x, y) illustrate that the 12 CaO·7 Al2O3:1 mol% Tm3 +/10 mol% Yb3 + can emit high-purity blue light.  相似文献   

9.
Ho3+/Yb3+/Tm3+ codoped LiNbO3 polycrystals exhibiting upconversion white-light under 980 nm excitation have been successfully fabricated by the high temperature solid-state reaction method. CIE coordinate of the Ho3+/Yb3+/Tm3+/LiNbO3 polycrystal is (0.34, 0.35), which is very close to the standard equal energy white-light illuminate (0.33, 0.33). Efficient green, red, and blue upconversion emissions have been observed. The luminescent decay dynamics are studied, and rate equations for the blue, green, and red emissions are set up to analyze the upconversion luminescence mechanism. The present results demonstrate that the competition between the linear decay and the upconversion process for the depletion of the intermediate excited states plays an important role in upconversion mechanism. The LiNbO3 with upconversion white-light will be a promising luminous material.  相似文献   

10.
Near-infrared excited up-conversion phosphors of RE3+/Yb3+(RE = Ho, Tm) co-doped SrIn2O4 were synthesized by a solid-state reaction method. X-ray diffraction analysis revealed the phase composition of those samples, and the up-conversion spectroscopic properties were studied in terms of up-conversion emission spectra. Under 980 nm near-infrared laser excitation, strong green emission with the peak at 546 nm was observed in SrIn2O4: Ho3+/Yb3+, which can be assigned to the characteristic 5S2(5F4)  5I8 transition of Ho3+. Furthermore, SrIn2O4: Tm3+/Yb3+ showed bright blue emission with the peak at 486 nm, which is associated with the 1G4  3H6 transition of Tm3+. The UC power studies indicated that the luminescence of SrIn2O4: Ho3+/Yb3+ and SrIn2O4: Tm3+/Yb3+ are attributed to two-photon and three-photon process, respectively. The possible UC luminescence mechanism and energy transfer in SrIn2O4: RE3+/Yb3+ were discussed.  相似文献   

11.
A detailed study of the fluorescence radiative dynamics and energy transfer processes between Er and Tm ions in the Er3+/Tm3+ doped fluoride glass is reported. The fluorescence properties of 2.7 μm emission, other infrared and visible emissions are investigated under different selective laser excitations. Three Judd–Ofelt intensity parameters, energy transfer microparameters and efficiency have been determined and discussed. It is found that present Er3+/Tm3+ doped fluoride glass possesses large calculated emission cross section (8.98×10–21 cm2) around 2.7 μm. The more suitable pumping scheme for laser applications at 2.7 μm laser is 980 nm excitation for Er3+/Tm3+ doped fluoride glass.  相似文献   

12.
This paper deals with the designing of a Tm3+-doped chalcogenide Photonic Crystal Fiber (PCF) amplifier operating in the mid-IR range. The chalcogenide glass of 72GeS2–18Ga2S3–10CsI (in mol%) was fabricated with the high temperature melt-quenching method, which exhibited a strong emission peak around 3.8 μm under the excitation of a 800 nm laser. By employing the rate equations and propagation equations, the amplifying characteristics of the designed PCF amplifier were worked out. It is shown that the designed PCF amplifier exhibits a signal gain larger than 30 dB and a spectral width wider than 200 nm. The theoretical models and simulation results show that the PCF presented in this work can be used in developing high efficiency mid-IR light sources.  相似文献   

13.
This work reports the upconversion luminescence properties of Tm3+/Yb3+ ions in lead tungstate tellurite (LTT) glasses. Judd–Oflet intensity parameters have been obtained from the absorption band intensities of Tm3+ singly-doped and Tm3+/Yb3+ co-doped LTT glasses. The spontaneous emission probabilities, radiative lifetimes and branching ratios for 1G4 and 3H4 emission levels of Tm3+ have been determined. Upconversion luminescence has been observed by exciting the samples at 980 nm (Yb3+:2F7/22F5/2) at room temperature. Four upconversion emission bands corresponding to the 1G43H6 (477 nm), 1G43F4 (651 nm), 1G43H5 (702 nm) and 3H43H6 (810 nm) transitions have been identified. The relative variation in the intensities of upconversion bands, the different channels responsible for upconversion spectra and the effect of Yb3+ ions concentration on the upconversion luminescence of Tm3+ ions have also been discussed.  相似文献   

14.
Ce3+, Tb3+ codoped amorphous calcium silicate phosphor was prepared by heating (830 °C for 30 min) Ce3+, Tb3+ codoped calcium silicate hydrate phosphor formed by liquid-phase reaction. The excitation peak wavelength of the resulting phosphor was 330 nm and the emission peak wavelengths were at 544 nm, attributed to the 5D47F5 transition of Tb3+, and at 430–470 mm, attributed to Ce3+. The intensity ratio of the two peaks could be freely controlled by varying the Tb/Ca atomic ratio of the Ce3+, Tb3+ codoped amorphous calcium silicate phosphor, allowing light to be emitted over a wide range from blue to green. It was clarified that energy transfer exists from Ce3+ to Tb3+.  相似文献   

15.
We present highly efficient 480 and 800 nm upconversion emissions in Tm3+/Yb3+ co-doped water-free low silica calcium aluminosilicate glass under excitation at 976 nm. As a result of this efficient upconversion process, a luminescent switching with the excitation intensity has been observed. The switching is explained and discussed using rate equations analysis and saturation effects. By means of fitting of the experimental data point, it was possible to obtain the value of the energy transfer parameter related to the transition 2F5/2, 3H42F7/2, 1G4. The value of this parameter is higher than that of materials like YLF. This switching mechanism could be used in the development of sensors and networks for optical processing and optical communications.  相似文献   

16.
A Eu3+, Tb3+ codoped amorphous calcium silicate phosphor was prepared by heating a Eu3+, Tb3+ codoped calcium silicate hydrate phosphor formed by liquid-phase reaction for 30 min at 900 °C. The excitation peak wavelength of the resulting phosphor was 379 nm and the emission peak wavelengths were at 542 nm, attributed to the 5D47F5 transition of Tb3+, and at 613 mm, attributed to the 5D07F1 transition of Eu3+. The intensity ratio of the two peaks could be freely controlled by varying the Eu/Tb atomic ratio of the Eu3+, Tb3+ codoped amorphous calcium silicate phosphor, allowing light to be emitted over a wide range from green to red. It was clarified that electron transfer from Tb3+ to Eu3+ is occurring.  相似文献   

17.
Near-infrared emitting phosphors LaOCl:Nd3+/Yb3+ were prepared by the solid-state method, and their structures and luminescent properties were investigated by using X-ray diffraction and photoluminescence analysis, respectively. The studies shows that tetragonal LaOCl:Nd3+/Yb3+ can be synthesized by the solid-state reaction at 600 °C for 3 h. Upon 353 nm UV excitation, LaOCl:Nd3+/Yb3+ sample shows strong near-infrared emission lines in the region of 1060–1150 nm (corresponding to 4F3/2  4IJ transition of Nd3+, J = 9/2, 11/2, 13/2, 15/2) and 980–1050 nm (corresponding to 2F5/2  2F7/2 transition of Yb3+). The decreasing emission intensity of Nd3+ with increasing doping concentration of Yb3+ proved the energy transfer in LaOCl:Nd3+/Yb3+. The possible near-infrared emission and energy transfer mechanism between Nd3+ and Yb3+, as well as the energy transfer efficiency of LaOCl:Nd3+/Yb3+ were discussed.  相似文献   

18.
采用高温熔融法制备了组分为TeO2-ZnO-Na2O的Tm3+离子单掺和Tm3+/Yb3+共掺碲酸盐玻璃,应用Judd-Ofelt理论计算分析了玻璃样品的强度参量Ωt(t=2, 4, 6),自发辐射跃迁几率A,荧光分支比β和荧光辐射寿命τrad等光谱参量,测量得到了不同Yb3+离子掺杂浓度下玻璃样品的Tm3+离子上转换发光谱.结果显示,在980 nm泵浦光激励下玻璃样品发射出强烈的近红外上转换荧光.对Tm3+离子上转换发光分析表明,强烈的Tm3+离子近红外上转换发光主要来自于Yb3+/Yb3+离子间的共振能量传递以及基于单声子和双声子辅助的Yb3+/Tm3+离子间的非共振能量传递过程,并进一步计算得到了声子贡献比和能量传递系数.最后,计算分析了Tm3+:3F43H6能级间跃迁的1.8 μm波段吸收截面、受激发射截面和增益系数.研究表明,Yb3+/Tm3+共掺TeO2-ZnO-Na2O玻璃可以作为近红外波段固体激光器的潜在增益基质.  相似文献   

19.
2.0 mol% (relative to Ba2+) Yb3+ doped α-BaB2O4 (α-BBO) crystal was obtained by the Czochralski method. The doped crystal structure was determined by means of an X-ray diffraction analysis. The absorption, near-infrared (NIR) luminescence spectra and fluorescence decay curve of Yb3+ doped α-BBO crystal were investigated. NIR emission under 940 nm and 980 nm LDs (laser diodes) excitation was observed in the Yb doped α-BBO crystal.  相似文献   

20.
Tellurite glasses co-doped with Dy3+ and Dy3+/Tm3+ have been synthesized. Emission around 2.8 μm is successfully obtained in present glass upon excitation of a conventional 808 nm laser diode. Judd-Ofelt intensity parameters and radiative properties of Dy3+ ions are calculated using the Judd-Ofelt theory. The luminescence characteristics and energy transfer mechanism are investigated and discussed. According to the absorption, fluorescence spectra and lifetime measurements, Tm3+ ions can effectively absorb excitation and transfer their energy to Dy3+ ions with high efficiency (up to 86.80%). Hence, the results demonstrate that Dy3+/Tm3+ co-doped tellurite glasses possessing excellent spectroscopic properties is a potential medium for mid-infrared laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号