首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
《Comptes Rendus Chimie》2008,11(8):906-914
A novel unsymmetrically disubstituted propanedithiolate compound [Fe2(CO)42-dmpe)(μ-pdt)] (1) (pdt = SCH2CH2CH2S, dmpe = Me2PCH2CH2PMe2) was synthesized by treatment of [Fe2(CO)6(μ-pdt)] with dmpe in refluxing THF. Compound 1 was characterized by single-crystal X-ray diffraction analysis. Protonation of 1 with HBF4·Et2O in CH2Cl2 gave at room temperature the μ-hydrido derivative [Fe2(CO)42-dmpe)(μ-pdt)(μ-H)](BF4)] (2). At low temperature, 1H and 31P–{1H} NMR monitoring revealed the formation of a terminal hydride intermediate 3. Comparison of these results with those of a VT NMR study of the protonation of symmetrical compounds [Fe2(CO)4L2(μ-pdt)] [L = PMe3, P(OMe)3] suggests that in disubstituted bimetallic complexes [Fe2(CO)4L2(μ-pdt)], dissymmetry of the complex is required to observe terminal hydride species. Attempts to extend the series of chelate compounds [Fe2(CO)42-L2)(μ-pdt)] by using arphos (arphos = Ph2AsCH2CH2PPh2) were unsuccessful. Only mono- and disubstituted derivatives [Fe2(CO)6−n(Ph2AsCH2CH2PPh2)n(μ-pdt)] (n = 1, 4a; n = 2, 4b), featuring dangling arphos, were isolated under the same reaction conditions of formation of 1. Compound 4b was structurally characterized.  相似文献   

2.
《Comptes Rendus Chimie》2015,18(8):816-822
The treatment of [PdL3(NH3)]OTf (L3 = (PEt3)2(Ph) (1), (2,6-(Cy2PCH2)2C6H3) (3)) with NaNH2 in THF afforded dimeric and monomeric parent-amido palladium(II) complexes with bridging and terminal NH2, respectively, anti-[Pd(PEt3)(Ph)(μ-NH2)]2 (2) and Pd(2,6-(Cy2PCH2)2C6H3)(NH2) (4). The dimeric complex 2 crystallizes in the space group P21/n with a = 13.228(2) Å, b = 18.132(2) Å, c = 24.745(2) Å, β = 101.41(1)°, and Z = 4. It has been found that there are two crystallographically independent molecules with Pd(1)–Pd(2) and Pd(3)–Pd(4) distances of 2.9594 (10) and 2.9401(9) Å, respectively. The monomeric amido complex 4 protonates from trace amounts of water to give the cationic ammine species [Pd(2,6-(Cy2PCH2)2C6H3)(NH3)]+. Complex 4 reacts with diphenyliodonium triflate ([Ph2I]OTf) to give aniline complex [Pd(2,6-(Cy2PCH2)2C6H3)(NH2Ph)]OTf (5). Reaction of 4 with dialkyl acetylenedicarboxylate (DMAD, DEAD) yields diastereospecific palladium(II) vinyl derivative (Z)–(Pd(Cy2PCH2)2C6H3)(CR = CR(NH2)) (R = CO2Me (6a), CO2Et (6b)). Reacting complexes 6a and 6b with p-nitrophenol produces (Pd(Cy2PCH2)2C6H3)(OC6H4p-NO2) (8) and cis-CHR = CR(NH2), exclusively.  相似文献   

3.
A method for the synthesis and isolation of 1,1′-methylene-bis-(3-aryl-imidazol-2-ylidene) ligands, aryl = 2,6-diisopropyl-phenyl (DiPP), LDiPP, mesityl (mes), Lmes, is reported, which provides synthetically useful quantities of high purity. Derivatisation of LDiPP with chalcogenides gave the adducts LDiPPE2, E = S, Se, Te. Reaction of LDiPP with [Pd(tmeda)Me2], [Pt(μ-SMe2)Me2]2, [Ir(1,5-COD)(μ-Cl)]2/KPF6 and [NiBr2(dme)] gave [Pd(LDiPP)Me2] (1), [Pt(LDiPP)Me2] (2), [Ir(LDiPP)(1,5-COD)](PF6) (3) and [Ni(LDiPP)Br2] (4), respectively. The latter was reduced in the presence of CO to [Ni(LDiPP)(CO)2] (5). The structures of Lmes, LDiPPTe2, and 15 are also reported.  相似文献   

4.
The reaction of [Ru2(O2CMe)(DPhF)3(H2O)]BF4 (DPhF = N,N′-diphenylformamidinate) with CO gas leads to [Ru2(O2CMe)(DPhF)3(CO)]BF4 (1), that is the first isolated carbonyl complex containing the Ru25+ unit. The nitrosyl analogue [Ru2(O2CMe)(DPhF)3(NO)]BF4 (2) is prepared by reaction of Ru2Cl(O2CMe)(DPhF)3 with NOBF4. However, the attempts to obtain the cyanide derivative by reaction of Ru2Cl(O2CMe)(DPhF)3 or [Ru2(O2CMe)(DPhF)3(H2O)]BF4 with NaCN were unsuccessful. The structure of compounds 1 · CH2Cl2 and 2 · CH2Cl2 are described. Both compounds are isomorphous. The magnetic measurements at variable temperature demonstrate that 1 is paramagnetic with one unpaired electron in all range of temperature, in contrast to the three unpaired electrons usually present in Ru25+ complexes. The analogous nitrosyl compound 2 is diamagnetic.  相似文献   

5.
Palladium–biscarbene complexes derived from N,N′-bis(1,2,4-triazol-1-yl)methane, which bear an alkyl chain functionalized with a hydroxyl group, have been synthesized ([Pd(L1)Br2] (6) and [Pd(L1)I2] (7) [L1 = 1,1′-(3-hydroxypropylidene)bis(4-butyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene)]). Each product is obtained as a non-equimolecular mixture of two conformers. The hydroxyl group has been replaced by bromide and methanesulphonate and ( [Pd(L2)Br2] [L2 = 1,1′-(3-bromopropylidene)bis(4-butyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene)] (9)) and ([Pd(L3)Br2] [L3 = 1,1′-(3-methanesulphonyloxypropylidene)-bis(4-butyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene)] (10)) were obtained, respectively, as mixtures of conformers. All compounds consist of a six-membered metallacyclic structure in a boat conformation. Major conformers present the functionalized chain in the axial position, while in minor conformers it is located in the equatorial position.  相似文献   

6.
Reactions of group 10 transition metals with the ditopic ligand dipicolyldithiocarbamate (DPDTC) were performed. Thus, 1:2 reactions of [Ni(CH3COO)2], [Pd(COD)Cl2] or [Pt(COD)Cl2] with DPDTC produced monomeric complexes of the type [M(κ2-SCS-DPDTC)2, M = Ni (1), Pd (2) or Pt (3)] with the dithiocarbamate ligand (DTC) coordinated in a typical chelate κ2-SCS fashion. Interestingly, the reaction of [NiCl2] with DPDTC, under similar conditions, afforded the organic compound 2-(pyridin-2-ylmethyl)imidazo[1,5-a]pyri-dine-3(2 H)-thione (4) as unique product. In order to prove the ditopic nature of the ligand DPDTC, complex [Pd(κ2-SCS-DPDTC)2] (2) was further reacted with [ZnCl2] in a 1:2 M ratio to yield the trinuclear complex [Cl2Zn(κ2-NN-DPDTC-SCS-κ2)Pd(κ2-SCS-DPDTC-NN-κ2)ZnCl2] (5). The molecular structures of all compounds were determinate by typical analytical techniques including the unequivocal determination of all structures by single crystal X-ray diffraction analysis. As expected, complexes 13 are isostructural, and the metal centres exhibiting slightly distorted square-planar geometries. While in 5, the trinuclear nature of the complex in confirmed exhibiting a nice combination of tetrahedral-square planar-tetrahedral geometries for the Zn-Pd-Zn centres respectively.  相似文献   

7.
A new water-soluble sulfur-containing palladacyclic diaqua complex [(SC)PdII(H2O)2]2(SO4) {[1]2(SO4), SC = C6H4-2-(CH2StBu)} was synthesized from a reaction of Ag2SO4 with a water-insoluble palladacyclic dichloro complex [(SC)PdII(μ-Cl)]2 (2) in water. Water-solubility of [1]2(SO4) at pH 7 at 25 °C is 9.4 mg/mL. NH4PF6 was added to the solution of [1]2(SO4) in water to give [1](PF6). The structures of [1](PF6) and 2 were unequivocally determined by X-ray analysis.  相似文献   

8.
N-Thioamide thiosemicarbazone derived of 2-chloro-4-hydroxy-benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in chloroform gave the adducts [ReX(CO)3(HL)] (1a X = Cl, R = H; 1a′ X = Br, R = H; 1b X = Cl, R = CH3; 1b′ X = Br, R = CH3; 1c X = Cl, R = Ph; 1c′ X = Br, R = Ph) in good yield. Complexes 1a′ and 1b’ were also obtained by the reaction of HL1 and HL3 with [ReBr(CO)5] in toluene.All the compounds have been characterized by elemental analysis, mass spectrometry (FAB), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3 and 1a·H2O were also established by X-ray diffraction. In 1a, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms, forming a five-membered chelate ring, as well as three carbonyl carbon and chloride atoms. The resulting coordination polyhedron can be described as a distorted octahedron.The study of the crystals obtained by slow evaporation of methanol and DMSO solutions of the adducts 1a′ and 1b, respectively, showed the formation of dimer structures based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6]·3H2O (2a)·3H2O and [Re2(L2)2(CO)6]·(CH3)2SO (2b)·2(CH3)2SO. Amounts of these thiosemicarbazonate complexes [Re2(L)2(CO)6] (2) were obtained by reaction of the corresponding free ligands with [ReCl(CO)5] in dry toluene.In 2a·3H2O and 2b·2(CH3)2SO the dimer structures are established by Re–S–Re bridges, where S is the thiolate sulphur from a N,S-bidentate thiosemicarbazonate ligand. In both structures the rhenium coordination sphere is similar; the dimers are in the same diamond Re2S2 face.  相似文献   

9.
Two hexanuclear zinc(II) complexes, [Zn6(L1)22-OH)22-CH3COO)8] · CH3CN (1 · CH3CN) and [Zn6(L2)22-OH)22-CH3COO)8] · 4CH3CN (2 · 4CH3CN), where HL1 = 4-methyl-2,6-bis(cyclohexylmethyliminomethyl)-phenol and HL2 = 4-methyl-2,6-bis(1-naphthalylmethyliminomethyl)-phenol, have been synthesized and characterized by elemental analysis, FT-IR and fluorescence spectroscopic methods, and by X-ray diffraction analysis. In the asymmetric unit of complex 1, two of the three zinc atoms have pentacoordinate geometries and the other is tetrahedrally coordinated, whereas the three distinct Zn atoms in complex 2 adopt three different coordination environments, namely distorted octahedral, trigonal bipyramidal and tetrahedral. The fluorescence properties of the ligands and complexes have been investigated.  相似文献   

10.
《Polyhedron》2005,24(3):391-396
The reaction of [(η5-C5Me5)Ru(PPh3)2Cl] (1) with acetonitrile in the presence of excess NH4PF6 leads to the formation of the cationic ruthenium(II) complex [(η5-C5Me5)Ru(PPh3)2(CH3CN)]PF6 (2). The complex (2) reacts with a series of N,N′ donor Schiff base ligands viz. para-substituted N-(pyrid-2-ylmethylene)-phenylamines (ppa) in methanol to yield pentamethylcylopentadienyl ruthenium(II) Schiff base complexes of the formulation [(η5-C5Me5)Ru(PPh3)(C5H4N-2-CHN-C6H4-p-X)]PF6 [3a]PF6–[3f]PF6, where C5Me5 = pentamethylcylopentadienyl, X = H, [3a]PF6, Me, [3b]PF6, OMe, [3c]PF6, NO2, [3d]PF6, Cl, [3e]PF6, COOH, [3f]PF6. The complexes were isolated as their hexafluorophosphate salts. The complexes were fully characterized on the basis of elemental analyses and NMR spectroscopy. The molecular structure of a representative complex, [(η5-C5Me5)Ru(PPh3)(C5H4N-2-CHN-C6H4-p-Cl)]PF6 [3e]PF6, has been established by X-ray crystallography.  相似文献   

11.
A series of heterodinuclear acylpalladium–cobalt complexes having a bidentate nitrogen ligand, L2(RCO)Pd–Co(CO)4 (L2 = bpy, R = Me (5), Ph (6); L2 = tmeda, R = Me (7), Ph (8); L2 = phen, R = Me (9), Ph (10)) are prepared by metathetical reactions of PdRIL2 with Na+[Co(CO)4] followed by treatment with CO. These complexes are characterized by NMR and IR spectroscopies and elemental analyses, and the molecular structures of 6, 8, and 9 are determined by X-ray structure analysis. Geometry at Pd is essentially square planar and the Co atom is considered to have d10 tetrahedral structure, where cobalt(-I) anion coordinates to palladium(II) cation. Heterodinuclear organopalladium–cobalt complexes are shown to catalyze copolymerization of aziridines and CO under mild conditions. Reaction of (dppe)MePd–Co(CO)4 (1) with aziridine gives a cationic (aziridine)palladium(II) complex with [Co(CO)4] anion, [PdMe(aziridine)(dppe)]+[Co(CO)4] (13).  相似文献   

12.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

13.
Dinuclear ruthenium(I,I) carboxylate complexes [Ru2(CO)4(μ-OOCR)2]n (R = CH3 (1a), C3H7 (1b), H (1c), CF3 (1d)) and 2-pyridonate complex [Ru2(CO)4(μ-2-pyridonate)2]n (3) catalyze efficiently the cyclopropanation of alkenes with methyl diazoacetate. High yields are obtained with terminal nucleophilic alkenes (styrene, ethyl vinyl ether, α-methylstyrene), medium yields with 1-hexene, cyclohexene, 4,5-dihydrofuran and 2-methyl-2-butene. The E-selectivity of the cyclopropanes obtained from the monosubstituted alkenes and the cycloalkenes decreases in the order 1b > 1a > 1d > 1c. The cyclopropanation of 2-methyl-2-butene is highly syn-selective. Several complexes of the type [Ru2(CO)4(μ-L1)2]2 (4) and (5), [Ru2(CO)4(μ-L1)2L2] (L2 = CH3OH, PPh3) (6)–(9) and [Ru2(CO)4(CH3CN)2(μ-L1)2] (10) and (11), where L1 is a 6-chloro- or 6-bromo-2-pyridonate ligand, are also efficient catalysts. Compared with catalyst 3, a halogen substituent at the pyridonate ligand affects the diastereoselectivity of cyclopropanation only slightly.  相似文献   

14.
Reaction of [Ag(CH3impy)2]PF6, 1, with Au(tht)Cl produces the monometallic Au(I)-species [Au(CH3impy)2]PF6, 2. Treatment of 2 with excess AgBF4 in acetonitrile, benzonitrile or benzylnitrile produces the polymeric species {[AuAg(CH3impy)2(L)](BF4)2}n, (L = CH3CN,3; L = C6H5CN, 4; L = C6H5CH2CN, 5) where the Au(I) centers remain bound to two carbene moieties while the Ag(I) centers are coordinated to two alternating pyridyl groups and a solvent molecule (L). Reaction of 2 with AgNO3 in acetonitrile produces the zig-zag mixed-metal polymer {[AuAg(CH3impy)2(NO3)]NO3}n, 6, that contains a coordinated nitrate ion in place of the coordinated solvent species. All of these polymeric materials are dynamic in solution and dissociate into their respective monometallic components. Compounds 26 are intensely luminescent in the solid-state and in frozen solution. All of these complexes were characterized by 1H, 13C NMR, electronic absorption and emission spectroscopy and elemental analysis.  相似文献   

15.
Two diiron dithiolate complexes [{μ-SC(NBn)CH(NHBn)S-μ}Fe2(CO)5L] (L = PPh3, 2; P(Pyr)3, 3) containing a functionalized C2 bridge with two vicinal basic sites were prepared and characterized as models of the FeFe-hydrogenase active site. The molecular structures of 2 and its N-protonated form [(2HN)(OTf)] were determined by X-ray analyses of single crystals. In the solid state of [(2HN)(OTf)]. Each asymmetric unit contains a molecule of [(2HN)(OTf)] and a molecule of water. The molecule of water is close to the iron atom of the [Fe(CO)3] unit (Fe···O(H2O), 4.199 Å). The complexes 2 and 3 are relatively protophilic. 31P NMR spectra and cyclic voltammograms show that they can be protonated by the mild acids CCl3COOH and CF3COOH. Electrochemical studies show that the first reduction peak of 3 at ?1.51 V versus Fc+/Fc is 110 mV more positive than that (?1.62 V) found for the analogous diiron azadithiolate complex [{(μ-SCH2)2N(CH2C6H5)}Fe2(CO)5P(Pyr)3] (7). Protonation of 2 and 3 leads to the anodic shifts of 610–650 mV for the FeIFeI/FeIFe0 reduction potentials. The shifts are apparently larger than that (450 mV) for protonation of 7. The reaction of the all-carbonyl complex [{μ-SC(NBn)CH(NHBn)S-μ}Fe2(CO)5L] with two equivalents of bis(diphenylphosphino)methane (dppm) in refluxing toluene affords a desulfurized complex [(μ-S)(μ-dppm)2Fe2(CO)4] (6). The reaction process was studied. A dppm mono-dentate intermediate [{μ-SC(NBn)CH(NHBn)S-μ}Fe2(CO)51-dppm)] (4) and a dppm μ-bridging species [{μ-SC(NBn)CH(NHBn)S-μ}Fe2(CO)4(μ-dppm)] (5) have been isolated and spectroscopically characterized.  相似文献   

16.
Reactions of incomplete cubane-type clusters [(Cp°RuCl)2(μ-SH)(μ-SM′Cl2)] (M′ = Sb (2a), Bi; Cp° = η5-C5Me4Et) with 0.5 equiv of [PdCl2(cod)] (cod = 1,5-cyclooctadiene) afforded the corner-shared double cubane-type clusters [{(Cp°Ru)(Cp°RuCl)(μ-SM′Cl2)}23-S)2(μ-Cl)2Pd] (3a: M′ = Sb, 3b: M′ = Bi) in moderate yields, whereas treatment of 2a with 0.75 equiv of [PdCl2(cod)] gave the corner-shared triple cubane-type cluster [{(Cp°Ru)(Cp°RuCl)(μ-SSbCl2)(μ3-S)2(μ-Cl)2Pd}2(Cp°Ru)2] (4). Single-crystal X-ray analyses have disclosed the detailed structures of novel heptanuclear and decanuclear mixed-metal cores for 3a and 4, respectively.  相似文献   

17.
Cationic palladium(II) and rhodium(I) complexes bearing 1,2-diaryl-3,4-bis[(2,4,6-tri-t-butylphenyl)phosphinidene]cyclobutene ligands (DPCB–Y) were prepared and their structures and catalytic activity were examined (aryl = phenyl (DPCB), 4-methoxyphenyl (DPCB–OMe), 4-(trifluoromethyl)phenyl (DPCB–CF3)). The palladium complexes [Pd(MeCN)2(DPCB–Y)]X2 (X = OTf, BF4, BAr4 (Ar = 3,5-bis(trifluoromethyl)phenyl)) were prepared by the reactions of DPCB–Y with [Pd(MeCN)4]X2, which were generated from Pd(OAc)2 and HX in MeCN. On the other hand, the rhodium complexes [Rh(MeCN)2(DPCB–Y)]OTf were prepared by the treatment of [Rh(μ-Cl)(cyclooctene)2]2 with DPCB–Y in CH2Cl2, followed by treatment with AgOTf in the presence of MeCN. The cationic complexes catalyzed conjugate addition of benzyl carbamate to α,β-unsaturated ketones.  相似文献   

18.
《Polyhedron》2003,22(25-26):3383-3387
Three new octahedral rhenium chalcocyanide cluster compounds [CuNH3(trien)]2[Re6S8(CN)6] · 7H2O (1), [CuNH3(trien)]2[Re6Se8(CN)6] (2) and [CuNH3(trien)]2[Re6Te8(CN)6] · H2O (3) exhibiting ionic structures have been obtained by the diffusion of an ammonia solution of KCs3[Re6S8(CN)6] (for 1), K4[Re6Se8(CN)6] · 3.5H2O (for 2) or Cs4[Re6Te8(CN)6] · 2H2O (for 3) into a glycerol solution of CuCl2 · 2H2O in the presence of trien (trien=triethylenetetramine). The compounds have been characterized by single-crystal X-ray diffraction. All three compounds contain a cationic complex [CuNH3(trien)]2+ which was not described previously.  相似文献   

19.
Arylselenium(II) derivatives of dithiophosphorus ligands of type ArSeSP(S)R2 [Ar = Ph, R = Ph (1), OPri (2); 2-[MeN(CH2CH2)2NCH2]C6H4, R = Ph (3), OPri (4); 2-[O(CH2CH2)2NCH2]C6H4, R = OPri (6)] were prepared by redistribution reactions between Ar2Se2 and [R2P(S)S]2. The derivative [2-{O(CH2CH2)2NCH2}C6H4]SeSP(S)Ph2 (5) was obtained by the salt metathesis reaction between [2-{O(CH2CH2)2NCH2}C6H4]SeCl and NH4S2PPh2. The compounds were investigated by multinuclear (1H, 13C, 31P, 77Se) NMR and infrared spectroscopy. The crystal and molecular structures of 1, 3, 4 and 6 were determined by single-crystal X-ray diffraction. In compounds 3, 4 and 6 the N(1) atom is intramolecularly coordinated to the selenium center, resulting in a T-shaped geometry (hypervalent 10-Se-3 species). The dithiophosphorus ligands act as anisobidentate in 1 and monodentate in 3, 4 and 6. Supramolecular architectures based on intermolecular S?H and N?H contacts between molecular units are formed in the hypervalent derivatives 3 and 4, while in the compounds 1 and 6 the molecules are associated into polymeric chains through either Se?S or O?H contacts, with no further inter-chain interactions.  相似文献   

20.
The reaction of an S-bridged CoIIIPdIICoIII trinuclear complex containing two non-bridging thiolato groups, [Pd{Co(aet)3}2]2+ (aet = 2-aminoethanethiolate), with o-dibromoxylene (o-xylBr2) in water produced a cyclic CoIII4PdII2 hexanuclear complex, [{Co2Pd(aet)4}2(o-L)2]8+ ([1]8+; o-L = o-bis(2-aminoethylthiomethyl)benzene), in which two CoIIIPdIICoIII trinuclear units are linked by two o-xyl2+ moieties through C–S bonds. A similar cyclic CoIII4PdII2 complex, [{Co2Pd(aet)4}2(m-L)2]8+ ([2]8+; m-L = m-bis(2-aminoethylthiomethyl)benzene), bearing a relatively large cavity that accommodates water molecule(s), was synthesized by the reaction of [Pd{Co(aet)3}2]2+ with m-dibromoxylene (m-xylBr2) in water. While [1]8+ afforded only the racemic44) isomer, both the racemic ([2a]8+; Δ44) and the meso ([2b]8+; Δ2Λ2) isomers were formed for [2]8+. In addition, the meso [2b]8+ was found to exist as a mixture of two diastereomers, (ΔS)2R)2 and (ΔSΔR)(ΛRΛS), which arise from the difference in chiral configurations (R and S) of asymmetric sulfide S atoms, while the racemic [1]8+ and [2a]8+ existed as a pair of enantiomers, (ΔS)4 and(ΛR)4, which were optically resolved. The complexes obtained were characterized on the basis of electronic absorption, CD, and NMR spectroscopies, along with single crystal X-ray analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号