首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
We investigate the effect of thickness of HfO2 and Al2O3 barrier films on the breakdown temperature of Cu/barrier film/Si structures. The HfO2 and Al2O3 films are deposited using tetrakis-diethylamino hafnium and tris-diethylamino aluminum, respectively, as the metal precursors and ozone as the oxidizer at 250 °C. Interactions between the layers of Cu/barrier film (1 or 2 nm-thick)/Si structures due to high-temperature annealing in N2 are probed using sheet resistance measurements. The crystallinity of the multilayer structure and the possible formation of any anneal-induced reaction products are investigated with X-ray diffraction (XRD). The formation of Cu-silicide phase(s) due to diffusion of Cu atoms through the barrier layer indicates the failure of the corresponding diffusion barrier. The surface morphology of Cu is examined using scanning electron microscopy (SEM) and elemental mapping is done with energy dispersive X-ray spectroscopy (EDS). Our results show that both 1 and 2 nm-thick HfO2 and Al2O3 barrier films are capable of restricting the diffusion of Cu at high annealing temperatures; therefore, they could be used as effective diffusion barriers between Cu and Si.  相似文献   

2.
Undoped and 5%(Mn, In)-doped SnO2 thin films were deposited on Si(1 0 0) and Al2O3 (R-cut) by RF magnetron sputtering at different deposition power, sputtering gas mixture and substrate temperature. X-ray reflectivity was used to determine the films thickness (10–130 nm) and roughness (~1 nm). The combination of X-ray diffraction and Mössbauer techniques evidenced the presence of Sn4+ in an amorphous environment, for as-grown films obtained at low power and temperature, and the formation of crystalline SnO2 for annealed films. As the deposition power, substrate temperature or O2 proportion are increased, SnO2 nanocrystals are formed. Epitaxial SnO2 films are obtained on Al2O3 at 550 °C. The amorphous films are quite uniform but a more columnar growth is detected for increasing deposition power. No secondary phases or segregation of dopants were detected.  相似文献   

3.
In this paper amorphous ZrO2 and HfO2 thin films were obtained by direct UV irradiation of Zr(IV) and Hf(IV) β-diketonate precursor complexes on Si(1 0 0) and fused silica substrates. The precursors, Zr(CH3COCHCOCH3)4 and Hf(C6H5COCHCOCH3)4 were deposited as amorphous thin films by spin coating. The photochemistry of these films was monitored by FT-IR spectroscopy. The photolysis with 254 nm light led to the loss of the ligands from the coordination complexes, and the production of metallic oxides. The thin films products were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). These analyses revealed that as-deposited films are amorphous and that the presence of carbon is thought to arise from the ligands. However, post-annealing of the photodeposited films favors the stoichiometric and optical properties of ZrO2 and HfO2 thin films.  相似文献   

4.
CuAlO2 films were sputtered on quartz substrates at different oxygen partial pressures (OPP) and carried out the annealing at 900 °C for 5 h in N2 ambient. The structural properties of these films have been studied in detail by X-ray diffraction, Raman spectroscopy, and atomic force microscopy. Annealed CuAlO2 films are grown along the (0 0 1) preferential orientation. The film deposited at 20% OPP demonstrates the excellent crystalline behavior and the smallest electrical resistivity (41.8 Ω cm). At higher OPP, the crystalline behavior begins to degenerate up to the amorphous state at 60% OPP, and some micro-caves presented in the film surface become larger and deeper with the increase in OPP. We believe that the negative thermal expansion behavior associated with excess oxygen atoms is the primary responsibility for the change in structural properties.  相似文献   

5.
《Journal of Non》2007,353(13-15):1450-1453
Holographic recording by He–Ne laser (line 632.8 nm) light in amorphous As0.55Se0.45 thin films for different film thickness and grating period was studied. A strong dependence of the diffraction efficiency of the gratings on the readout light wavelength (650 nm, 805 nm and 1150 nm) was observed. A decrease in diffraction efficiency for longer wavelengths is explained by a decrease in the photoinduced changes of refractive index. It is shown that high efficiency gratings can be recorded in As0.55Se0.45 films with a thickness of ∼1 μm.  相似文献   

6.
《Journal of Non》2007,353(22-23):2244-2249
Transparent conductive oxides such as indium tin oxide (ITO) are interesting materials due to their wide-band gaps, high visible light transmittance, high infrared reflectance, high electrical conductivity, hardness and chemical inertness. ITO films were fabricated on soda lime glass substrates by using high-intensity pulsed ion beam (HIPIB) technique. The as-deposited films comprised of partially crystallized In2O3 and after annealing at 500 °C for 1 h the film changed to polycrystalline phase. After annealing carrier concentration and Hall mobility increased while specific resistance and sheet resistance decreased quickly; and this trend was also observed when film thickness increased up to 300 nm for the post-annealed samples. Further increase in thickness of the film changed the electrical properties slightly. Atomic force microscopy (AFM) revealed that roughness decreased after 500 °C annealing for 1 h in air, except for the film of 65 nm thick. The thickness of the film which relates to the carrier concentration and mobility, degree of crystallization, size of the grain, and connections among grains in film are main factors to determine film’s electrical properties.  相似文献   

7.
《Journal of Non》2005,351(49-51):3725-3729
A novel amorphous zirconium carbon nitrides (ZrCN) material was deposited by reactive sputtering using a ZrC target (99.5% in purity) in a mixture of Ar and N2 ambient. The microstructure and mechanical properties of the ZrCN films were examined with respect to N2 pressure. For thermal stability characterization, the stacked structure of Cu/ZrCN/Si was subsequently subject to thermal treatments at temperatures from 300 °C to 900 °C for 30 min in a vacuum tube with the base pressure of 3 × 10−5 torr. The results show that the amorphous ZrCN films exhibit superior mechanical properties to either ZrN or ZrC including hardness and elastic modulus. The stacked samples were shown to be thermally stable up to about 800 °C from Auger electron spectroscopy and X-ray diffraction, where the ZrCN still remains its amorphous phase. The device completely fails at 900 °C and the mechanism is discussed in the paper.  相似文献   

8.
《Journal of Non》2007,353(13-15):1437-1440
Surface morphology and roughness of amorphous spin-coated As–S–Se chalcogenide thin films were determined using atomic force microscopy. Prepared films were coated from butylamine solutions with thicknesses d  100 nm and then annealed in a vacuum furnace at 45 °C and 90 °C for 1 h for their stabilization. The root mean square surface roughness analysis of surfaces of as-deposited spin-coated As–S–Se films indicated a very smooth film surface (with Rq values 0.42–0.45 ± 0.2 nm depending on composition). The nanoscale images of as-deposited films confirmed that surface of the films is created by domains with dimensions 20–40 nm, which corresponds to diameters of clusters found in solutions. The domain character of film surfaces gradually disappeared with increasing annealing temperature while the solvent was removed from the films. Middle-infrared transmission spectra recorded a decrease of intensities of vibration bands connected to N–H (at 3367 and 3292 cm−1) and C–H (at 2965, 2935 and 2880 cm−1) stretching vibrations. Temperature regions of solvent evaporation T = 60–90 °C and glass transformation temperatures Tg = 135–150 °C of spin-coated As–S–Se thin films were determined using a modulated differential scanning calorimetry.  相似文献   

9.
《Journal of Non》2007,353(5-7):663-669
Currently there are intense industry-wide efforts in searching for new high dielectric constant (high-k) materials for use in future generations of ultra-large scale integrated circuits (ULSI). There are number of requirements for the new high-k materials, such as high dielectric constant, thermal stability (400 °C or higher), high mechanical strength, and good adhesion to neighboring layers. Oxide spinels comprise a very large group of structurally related compounds many of which are of considerable technological significance. Spinels exhibit a wide range of electronic and magnetic properties in particular nickel, hafnium, cobalt, containing spinels. In the present investigation, crack free, dense polycrystalline monoclinic structure of pure HfO2, and Al2HfO5 ultra-thin films have been prepared by a simple and cost effective sol–gel spin coating method. The formation of the monoclinic HfO2 phase at 600 °C and complete formation of the single phase Al2HfO5 at 800 °C has been reported. The composition of the annealed films has been measured and found to be 70 at.% of O, 30 at.% of Hf for HfO2 and 22 at.% of Al, 12 at.% of Hf and 66 at.% of O for Al2HfO5 films, which are close to the stoichiometry of the HfO2 and Al2HfO5 thin films.  相似文献   

10.
《Journal of Non》2006,352(38-39):4088-4092
In this paper, amorphous ZnO thin films were obtained by direct UV irradiation of β-diketonate Zn(II) precursor complexes spin-coated on Si(1 0 0) and fused silica substrates. ZnO films were characterized by means of XPS, X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). These analyses revealed that as-deposited films are amorphous and have a rougher surface than thermally treated films. Optical characterization of the films showed that these are highly transparent in the visible spectrum with an average transmittance of up to 95% over 400 nm, and an optical band-gap energy of 3.21 eV for an as-deposited film, and 3.27 eV for a film annealed at 800 °C. Low resistivity values were obtained for the ZnO films (1.0 × 10−2 Ω cm) as determined by Van der Pauw four-point probe method.  相似文献   

11.
12.
J.B. Chu  S.M. Huang  H.B. Zhu  X.B. Xu  Z. Sun  Y.W. Chen  F.Q. Huang 《Journal of Non》2008,354(52-54):5480-5484
Indium tin oxide (ITO) films were grown without external heating in an ambient of pure argon by RF-magnetron sputtering method. The influence of argon ambient pressure on the electro-optical properties of as-deposited ITO films was investigated. The morphology, structural and optical properties of ITO films were examined and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and UV–VIS transmission spectroscopy. The deposited ITO films with a thickness of 300 nm show a high transparency between 80% and 90% in the visible spectrum and 14–120 Ω/□ sheet resistance under different conditions. The ITO films deposited in the optimum argon ambient pressure were used as transparent electrical contacts for thin film Cu(In,Ga)Se2 (CIGS) solar cells. CIGS solar cells with efficiencies of the order of 7.0% were produced without antireflective films. The results have demonstrated that the developed ITO deposition technology has potential applications in thin film solar cells.  相似文献   

13.
《Journal of Non》2006,352(23-25):2335-2338
This paper reports the structural, electrical and optical properties of Yttrium doped zinc oxide (YZO) thin films deposited on Corning (7059) glass substrates by spin coating technique. A precursor solution of ZnO, 0.2 M in concentration was prepared from zinc acetate dissolved in anhydrous ethanol with diethanolamine as a sol gel stabilizer. Yttrium nitrate hexahydrate (Y2NO3 · 6H2O) was used as the dopant (3 wt%) in the present study. The films of different thickness in the range (200–500 nm) were prepared. The films were annealed in air at 450 °C for 1 h. It was observed that the c-axis orientation improves and the grain size increases as is indicated by an increase in intensity of the (0 0 2) peak and the decrease in the FWHM with the increase of film thickness. The resistivity decreased sharply from 2.8 × 10−2 to 5.8 × 10−3 Ω-cm as the thickness increased from 200 to 500 nm. However, the average transmittance decreased from 87% to 82.6% as the film thickness increased to 500 nm. The lowest sheet resistance of ∼120 Ω/□ was obtained for the 500 nm thick film.  相似文献   

14.
The superlattice films, which consist of amorphous silicon (a-Si) and amorphous gold (Au), were prepared by ultra-high vacuum evaporation system. The first layer was grown a-Si with a thickness of 4.2 nm and the second layer was grown Au with a thickness of 0.8 nm. Thermal annealing was performed at 473, 673, and 873 K, respectively. The structural properties of the films were investigated using transmission electron microscope (TEM), X-ray diffraction (XRD), and Raman scattering spectroscopy. The electrical property was assessed by the temperature dependence of electrical conductivity. A crystallization of Si and a forming of Au nanoparticles were observed in all of the annealing films. The crystalline volume fraction reached 70% by annealing time for 15 min. An average diameter of the Au nanoparticles embedded in Si matrix also increased with increasing the annealing temperature. At annealing temperature above 873 K, Au atoms migrated toward the film surface. It was observed that the electrical conductivity changed in several temperatures.  相似文献   

15.
The change in the surface morphology of amorphous Sb2Se3 thin films during the electron beam irradiation has been studied mainly by atomic force microscopy (AFM). Electron beam at accelerating voltages 30 kV is focused onto the surface of the specimens of 100-μm thickness, and then the surface morphology of each specimen has been observed by AFM in air. The modification of the film surface includes lateral and vertical resizing which is typically in the micrometer and sub-micrometer range. Protrusions above the surface as high as 90 nm are observed at 180 pA electron beam current, whilst trenches as deep as 97 nm are observed at 800 pA electron beam current (total thickness of thin film is 100 nm). The dependence of patterns characteristics on irradiation parameters such as exposure time and beam current has also been studied. Physical mechanisms for trench and mound formation are proposed.  相似文献   

16.
Tin dioxide thin films were prepared by pulsed laser deposition techniques on clean glass substrates, and the thin films were then annealed for 30 min from 50 to 550 °C with a step of 50 °C, respectively. The influence of the annealing temperature on the microstructural and morphological properties of the tin dioxide thin films was investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and selected area electron diffraction. The experimental results showed that the amorphous microstructure almost transformed into a polycrystalline tin dioxide phase exhibiting a preferred orientation related to the (1 1 0), (1 0 1) and (2 1 1) crystal planes with increased temperatures. The thin film annealed at 200 °C demonstrated the best crystalline properties, viz. optimum growth conditions. However, the thin film annealed at 100 °C revealed the minimum average root-mean-square roughness of 20.6 nm with average grain size of 26.6 nm. These findings indicate that the annealing temperature is very important parameter to determining the thin film quality, which involves the phase formation, microstructure and preferred orientation of the thin films.  相似文献   

17.
《Journal of Non》2007,353(5-7):635-638
Core level photoelectron spectroscopy has been used to investigate the effect of substrate doping on the binding energies of 1 nm HfO2/0.6 nm SiO2/Si films. A characteristic 0.26–0.30 nm Hf0.35Si0.65O2 silicate interface is formed between the gate oxide and the SiO2 layer with an equivalent oxide thickness of 0.5 nm. High substrate doping shifts the Fermi level upwards by 0.5 eV. An interface dipole forms giving rise to a shift in the local work function. Screening from substrate electrons is confined to the SiO2/Si interface. The principal contributions modifying the core level binding energies in the oxide are the doping dependant Fermi level position and the interface dipole strength.  相似文献   

18.
B. Kościelska  A. Winiarski 《Journal of Non》2008,354(35-39):4349-4353
Sol–gel derived xNb2O5–(100 ? x)SiO2 films (where x = 100, 80, 60, 50, 40, 20, 0 mol%) were nitrided at various temperatures (800 °C, 900 °C, 1000 °C, 1100 °C and 1200 °C). The structural transformations occurring in the films as a result of ammonolysis were studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The XRD results have shown that the temperatures below 1100 °C were too low to obtain a pure NbN phase in the samples. The AFM observations indicate that the formation of the NbN phase and the size of NbN grains are related to the silica content in the layer. NbN grains become more regular and larger as the niobium content increases. The maximum grain size of about 100 nm was observed for x = 100. Preparation of the Nb2O5–SiO2 sol–gel derived layers and the subsequent nitridation is a promising method of inducing crystalline NbN in amorphous matrices. It follows from the XPS results that a small amount of Nb2O5 remains in the films after nitridation at 1200 °C and that nitrogen reacted not only with Nb2O5 but also with SiO2.  相似文献   

19.
High-quality ZnO films were grown on Si(1 0 0) substrates with low-temperature (LT) ZnO buffer layers by an electron cyclotron resonance (ECR)-assisted molecular-beam epitaxy (MBE). In order to investigate the optimized buffer layer temperature, ZnO buffer layers of about 1.1 μm were grown at different growth temperatures of 350, 450 and 550 °C, followed by identical high-temperature (HT) ZnO films with the thickness of 0.7 μm at 550 °C. A ZnO buffer layer with a growth temperature of 450 °C (450 °C-buffer sample) was found to greatly enhance the crystalline quality of the top ZnO film compared to others. The root mean square (RMS) roughness (3.3 nm) of its surface is the smallest, compared to the 350 °C-buffer sample (6.7 nm), the 550 °C-buffer sample (7.4 nm), and the sample without a buffer layer (6.8 nm). X-ray diffraction (XRD), photoluminescence (PL) and Raman scattering measurements were carried out on these samples at room temperature (RT) in order to characterize the crystalline quality of ZnO films. The preferential c-axis orientations of (0 0 2) ZnO were observed in the XRD spectra. The full-width at half-maximum (FWHM) value of the 450 °C-buffer sample was the narrowest as 0.209°, which indicated that the ZnO film with a buffer layer grown at this temperature was better for the subsequent ZnO growth at elevated temperature of 550 °C. Consistent with these results, the 450 °C-buffer sample exhibits the highest intensity and the smallest FWHM (130 meV) of the ultraviolet (UV) emission at 375 nm in the PL spectrum. The ZnO characteristic peak at 438.6 cm−1 was found in Raman scattering spectra for all films with buffers, which is corresponding to the E2 mode.  相似文献   

20.
This work describes the preparation of HfO2 thin films by the sol–gel method, starting with different precursors such as hafnium ethoxide, hafnium 2,4-pentadionate and hafnium chloride. From the solution prepared as mentioned above, thin films on silicon wafer substrates have been realized by ‘dip-coating’ with a pulling out speed of 5 cm min?1. The films densification was achieved by thermal treatment for 10 min at 100 °C and 30 min at 450 °C or 600 °C, with a heating rate of 1 °C min?1. The structural and optical properties of the films are determined employing spectroellipsometric (SE) measurements in the visible range (0.4–0.7 μm), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The main objective of this paper was to establish a correlation between the method of preparation (precursor, annealing temperature) and the properties of the obtained films. The samples prepared from pentadionate and ethoxide precursors are homogenous and uniform in thickness. The samples prepared starting from chloride precursor are thicker and proved to be less uniform in thickness. Higher non-uniformity develops in multi-deposition films or in crystallized films. A nano-porosity is present in the quasi-amorphous films as well in the crystallized one. For the samples deposited on silicon wafer, the thermal treatment induced the formation of a SiO2 layer at the coating–substrate interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号