首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Non》2006,352(38-39):4082-4087
Liquids with the base compositions (16  x/2)Na2O · xNaF · 10CaO · 74SiO2 (x = 0, 1, 3, and 4) and (10  x/2) · Na2O · xNaF · 10CaO · yAl2O3 · (80  y)SiO2 (x = 0, 1, 3, 5 and y = 5 and 15) doped with 0.25 mol% Fe2O3 were studied by means of square-wave voltammetry in the temperature range from 1000 to 1500 °C. With increasing temperature, the redox equilibria were shifted to the reduced state. Also while increasing the alumina concentration, the Fe2+/Fe3+-redox equilibrium is shifted to the reduced state. In the soda-lime–silica melt the addition of fluoride shifts the equilibrium to the oxidized state, while in the aluminosilicate melts with 15 mol% Al2O3, the equilibrium is shifted to the reduced state. In the aluminosilicate melts with 5 mol% Al2O3, the equilibrium was not affected by the fluoride concentration. This is explained by the structure of the respective glass compositions.  相似文献   

2.
《Journal of Non》2007,353(24-25):2459-2468
This paper deals with a systematic study of crystal nucleation and growth kinetics in a 14.6Na2O–34.0CaO–51.4SiO2 mol% glass, which is close to the CaO · SiO2–Na2O · SiO2 pseudo-binary section, just left of the stoichiometric Na2O · 2CaO · 3SiO2 (N1C2S3) compound. We show that crystallization begins with nucleation of a Na4+2xCa4−x[Si6O18] (0 < x < 1) solid solution that is enriched in sodium as compared with both parent glass and the N1C2S3 compound; while a fully crystallized sample is composed only by a solid solution that is stable at very high temperatures, but is metastable in the temperatures under investigation. We thus confirm a continuous compositional change of the crystals during the course of crystallization.  相似文献   

3.
Glasses with the base mol% composition xNa2O · 10CaO · (90 ? x)SiO2 with x = 10, 16, 20 and 26 were investigated at high temperatures using square-wave voltammetry. The recorded voltammograms exhibit two peaks. That at less negative or (depending on temperature and glass composition) even positive potential is attributed to the reduction of Cu2+ to Cu+, while that observed at more negative potential is caused by the reduction of Cu+ to metallic copper. For both redox steps, the peak potentials decrease linearly with temperature. Those of the composition with 10 mol% Na2O show the most negative values. The diffusion coefficients can be fitted to Arrhenius equation. If referenced to the same viscosity, the diffusion coefficients decrease with increasing Na2O-concentration. The effect of composition on the thermodynamics as well as on diffusivities is explained by the incorporation of the copper ions into the melt structure.  相似文献   

4.
《Journal of Non》1999,243(2-3):281-284
The effect of different concentrations of the network modifier Na2O on the position of the Boson peak, observed in the low frequency Raman scattering experiments, is analyzed. Glasses containing 25% Na2O (Na2O · 4SiO2) and 33% Na2O (Na2O · 2SiO2) are compared with pure SiO2 glass. The observed shift of the Boson peak is interpreted in terms of a change of a correlation length, ℓ, corresponding to some medium range order. This length, ℓ, decreases when the amount of sodium oxide increases.  相似文献   

5.
《Journal of Non》2006,352(36-37):3914-3922
The effect of host glass composition on the optical absorption and fluorescence spectra of Sm3+ and Dy3+ has been studied in mixed alkali borate glasses of the type 67B2O3 · xLi2O · (32  x)Cs2O (x = 8, 12, 16, 20 and 24). The Judd–Ofelt intensity parameters (Ω2, Ω4 and Ω6) are calculated. The radiative transition probabilities (A), radiative lifetimes (τR), branching ratios (β) and integrated absorption cross-sections (Σ) are computed for certain excited states of Sm3+ and Dy3+ ions for different x values in the glass matrix. Stimulated emission cross-sections (σp) are obtained for certain emission transitions of two ions in these mixed alkali borate glasses. These parameters are compared for different x values in the glass matrix. Variation of these parameters with x in the glass matrix has been studied.  相似文献   

6.
《Journal of Non》2007,353(18-21):1941-1945
The effect of uranium oxide on the structure of sodium borosilicate host glasses has been studied by neutron diffraction. The samples were prepared by quenching the melted mixtures of composition 70 wt% [(65  x)SiO2 · xB2O3 · 25Na2O · 5BaO · 5ZrO2] + 30 wt% UO3 with x = 5, 10 and 15 mol%. It was found, that the U-loaded glasses posses good glass and hydrolytic stability. An enhanced probability for inter-mediate atomic correlations at around 4.8 Å has been established. The RMC simulation of the neutron diffraction data is consistent with a model where the uranium ions are incorporated into interstitial voids in the essentially unmodified network structure of the starting host glass. The U–O atomic pair correlation functions show a sharp peak at around 1.7 Å, and several farther distinct peaks are at 2.8, 3.6 and 4.1 Å. The uranium ions are coordinated by six oxygen atoms in the 1.6–3.4 Å interval.  相似文献   

7.
Classic composition 8.4Na2O·5K2O·10.8CaO·64SiO2·10.5CaF2·1.3Al2O3 (G1/GC1) and high silicon composition 7.6Na2O·4K2O·8.4CaO·71SiO2·8CaF2·1.0Al2O3 (G2/GC2) canasite-based glass and glass-ceramics were prepared, and the chemical durability and weathering of samples were studied with XRD, ICP-AES, SEM and optical microscopy. Interestingly, a kind of color fringe pattern caused by the acid leaching was directly observed on the glass ceramic surface under optical microscopy. The 20 day weight losses of glass and glass ceramic in acid (1 M HCl) and alkali (1 M NaOH/1 M Na2CO3) solution were measured. Accelerated weathering was used to demonstrate that increasing silicon content contributes to the weathering performance of glass and glass-ceramics. For different micro-structures and compositions, the weight loss of each glass and glass-ceramic is quite different. In general, through increasing the network interconnectivity of residual glass network and suppressing the crystallization of the less durable canasite phase, the addition of SiO2 (from 60 mol% to 71 mol%) enhanced the chemical durability of canasite-based glass and glass ceramic relatively under acid, alkali and weathering conditions.  相似文献   

8.
《Journal of Non》2006,352(32-35):3618-3623
Theoretical and experimental studies of the spatial phonon confinement in ternary CdSxSe1−x nanocrystals embedded in a glass matrix formed by the composites (40)SiO2−(30)Na2CO3–(29)B2O3–(1)Al2O3 (mol%) + [(2)CdO + (2)S + (2)Se] (wt%) were carried out. From the analysis of the surface phonon modes, the theoretical procedure has allowed the determination of the geometrical characteristics of the nanocrystals. The calculated frequencies were compared with the experimental values obtained from the Raman spectra of CdSxSe1−x nanocrystals grown under different thermal treatments. A good correlation between the experimental and calculated CdS-like and CdSe-like surface optical modes was observed. The Raman selection rules and their connection with the nature of the surface optical phonons is discussed in order to use Raman spectroscopy as a probe to determine the composition x and the geometrical shape of the semiconductor nanocrystals.  相似文献   

9.
Glass samples from four systems: xPbO–(100?x)B2O3 (x = 30, 40, 50 and 60 mol%), 50PbO–yAl2O3–(50?y)B2O3 (y = 2, 4, 6, 8 mol%), 50PbO–ySiO2–(50?y)B2O3 (y = 5, 10, 20, 30 mol%) and 50PbO–5SiO2yAl2O3–(45?y)B2O3 (y = 2, 4, 6, 8 mol%) were prepared by a melt-quench technique. Characterization of these systems was carried out using density measurements, UV–visible spectroscopy, differential scanning calorimetry (DSC), and 11B and 27Al magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR). Our studies reveal an increase in glass density with increasing lead(II) oxide concentration in pure lead borates and also with addition of silica into 50PbO–50B2O3 glass. 11B MAS NMR measurements determine that the fraction of tetrahedral borons (N4) reaches a maximum for the glass containing 50 mol% of PbO in the PbO–B2O3 glass series and that N4 is sharply reduced upon adding small amounts of Al2O3 into lead borate and lead borosilicate systems. 27Al MAS NMR experiments performed on glasses doped with aluminum oxide show that the Al3+ are tetra-, penta- and hexa-coordinated with oxygen, even without any excess concentration of Al3+ over charge-balancing Pb2+ cations. [5]Al and [6]Al concentrations are found to have unusually high values of up to 30%. The results of UV–visible absorption spectroscopy, DSC and density measurements support the conclusions drawn from the NMR studies, providing a consistent picture of structure–property relations in these glass systems.  相似文献   

10.
Raman spectra and electrooptical Kerr coefficients of glasses belonging to one lithium–niobate–silicate glass-forming system xNb2O5 · (66 ? x)SiO2 · 19Li2O · 11K2O · 2B2O3 · 2CdO are studied. It has been found that these glasses demonstrate a record value of electrooptical Kerr coefficient; the glass with x = 35 showed electrooptical Kerr coefficient equal to 266 × 10?16 m/V2. Using Raman spectroscopy combined with the concept of Constant Stoichiometric Groupings, a correlation of electrooptical Kerr coefficients of these glasses with the content of Li2O · Nb2O5 (or 2LiNbO3) groupings has been demonstrated. The hypothesis that electrooptical Kerr sensitivity of glasses is related to the ordered regions with composition and symmetry corresponding to some of known electrooptical crystals has been verified. These regions, which the authors called ‘Crystal Motifs’, are identified with the groupings found in studying Raman spectra of the glasses.  相似文献   

11.
Potassium-lithium niobiosilicate (KLiNS) glasses with a composition of (27 ? x)K2O · xLi2O · 27Nb2O5 · 46SiO2 (x = 0, 3, 12 and 20) have been synthesized by a melt-quenching method. The glass structure and devitrification behavior have been studied by Raman spectroscopy, DTA, and XRD. By increasing the lithium content, less distorted niobium octahedra increase, indicating a niobium clustering. This change strongly affects the crystallization behavior. In the glasses x = 0 and x = 3, just above Tg, only nanocrystals of an unidentified phase are formed, while for x = 12 and x = 20 potassium lithium niobate (KLN) solid solutions with tetragonal tungsten–bronze structure crystallize by bulk nucleation. In these glasses, LiNbO3 crystallizes at higher temperature by surface nuclei. Ultimately, it is possible to produce nanostructured glasses based on KLN nanocrystals, by partial replacement of K by Li.  相似文献   

12.
《Journal of Non》2006,352(28-29):2958-2968
The structure of RNa2O · B2O3 · KSiO2 · xP2O5 (0.5 < R < 2; 0.86 < K < 3) borosilicate glasses has been studied by nuclear magnetic resonance (NMR). 31P magic angle spinning (MAS), double quantum-magic angle spinning (DQ-MAS) and 31P–11B transfer of populations under double resonance magic angle spinning (TRAPDOR MAS) NMR were used to determine the phosphate speciation in the glasses and their connectivity with the borosilicate network. The structure of the glass network was characterized with 11B, 29Si and 23Na MAS NMR. Ab initio calculations of the 31P chemical shielding were carried out in order to confirm the connectivity between phosphorus and the structural units of the borosilicate glass network. Na3PO4 (monophosphate), Na4P2O7 (diphosphate) and P–O–B species (mono- and diphosphate groups with borate units as the next nearest neighbors) are found all along the compositional range studied. The proportion of the P–O–B groups increases as the glass optical basicity decreases, while the proportions of mono- and diphosphate species decrease. The change in the glass transition temperature of the phospho-borosilicate glasses with respect to that of the borosilicate ones is discussed in terms of the structural characterization. The formation of phosphate species gives rise to the increase in Tg, which is attributed to the re-polymerization of the silicate network, while the formation of P–O–B bonds weakens the glass network and produces a decrease in the glass transition temperature.  相似文献   

13.
A glass of composition (20 ? x)Li2O–xLiCl–65B2O3–10SiO2–5Al2O3 where 0 ? x ? 12.5 wt% is prepared using the normal melt-quenching technique. The optical constants and electrical conductivity and their correlation are investigated, furnished and discussed with the substitution of Li2O for LiCl. The mechanism of the optical absorption and the calculated Urbach energy follow the rule of phonon-assisted transitions. The ionic conduction mechanism is determined by activation energy process. Substitution up to 10 wt% LiCl provides high ionic conductivity (1.9 × 10?2 Ω?1 m?1) due to the high average electronegativity of LiCl which increases the polarizability of lithium ions. The small cation–anion distance approach confirmed the enhancement in ionic conductivity of LiCl containing glass compared to that of Li2O. Due to the large size of Cl? ions, there is an expansion of the lattice which in turn broadens the available path windows. For 12.5 wt% LiCl, anomalous density behavior is observed and a reduction in conductivity is occurred, σ = 5.4 × 10?3 Ω?1 m?1. Owing to the model of bond fluctuation, the reduction is attributed to the increase in the alkali halide concentration which creates bottlenecks that hinder the motion of Li+ ions. The ionic conductivity character is strongly supported by the behavior of the glass ionicity factor, density, molar volume, refractive index, average boron–boron separation, molar refraction, metallization criterion and non-bridging oxygen concentration of the studied glass.  相似文献   

14.
The effects of substituting Si by M4 + cations in soda-lime silica glasses were analyzed by impedance spectroscopy in the frequency range of 1 Hz–1 MHz. The glass composition was (mol%) 22Na2O·8CaO·65SiO2·5MO2, M = Si, Ti, Ge, Zr, Sn, and Ce. Although the Na+ concentration in the glasses is constant, the Zr-containing glass exhibits the highest dc conductivity and the lowest activation energy, while the Ce-containing glass exhibits the lowest conductivity. The activation energies obtained experimentally agree with those obtained by a theoretical equation proposed by Anderson and Stuart. The differences in electrical conductivity presented by the several M-containing glasses are attributed to the effect that the M4 + ion has on the mobility of the diffusing Na+ ion.  相似文献   

15.
《Journal of Non》2007,353(22-23):2295-2300
(1  x)Li2O–xNa2O–Al2O3–4SiO2 glasses were studied for the progressive percentage substitution of Na2O for Li2O at the constant mole of Al2O3 and SiO2. The crystallization temperature at the exothermic peak increased from 898 to 939 °C when the Na2O content increases from 0 to 0.6 mol. The coefficient of thermal expansion and density of these as-quenched glasses increase from 6.54 × 10−6 °C−1 to 10.1 × 10−6 °C−1 and 2.378 g cm−3 to 2.533 g cm−3 when the Na2O content increases from 0 to 0.4 mol, respectively. The electrical resistivity has a maximum value at Na2O · (Li2O + Na2O)−1 = 0.4. The activation energy of crystallization decreases from 444 to 284 kJ mol−1 when the Na2O content increased from 0 to 0.4 mol. Moreover, the activation energy increases from 284 kJ mol−1 to 446 kJ mol−1 when the Na2O content increased from 0.4 to 0.6 mol. The FT-IR spectra show that the symmetric stretching mode of the SiO4 tetrahedra (1035–1054 cm−1) and AlO4 octahedra (713–763 cm−1) exhibiting that the network structure is built by SiO4 tetrahedra and AlO4.  相似文献   

16.
《Journal of Non》2005,351(8-9):623-631
Na2O–CaO–ZrO2–SiO2 glass compositions with ZrO2 contents of up to 20 mol% were melted. Up to 12.3 mol% ZrO2 could be dissolved into the glasses. Melting temperatures ⩾1450 °C were required to remove seed and produce a melt that could be cast. Addition of ZrO2 caused an increase in the glass transition and crystallization temperatures. Glasses crystallized at temperatures ⩾1050 °C with Keldyshite and Parakeldyshite (Na2O · ZrO2 · 2SiO2) as the crystalline phases. Addition of up to 4.6 mol% ZrO2 caused an increase in the hydrolytic resistance of the glass, with further additions having little effect. The suitability of these glasses as hosts for ZrO2-containing radioactive wastes is discussed.  相似文献   

17.
V. Simon  C. Albon  S. Simon 《Journal of Non》2008,354(15-16):1751-1755
The in vitro behavior of xAg2O (100 ? x)[50P2O5 · 30CaO · 20Na2O] glasses (0.14 ? x ? 20 mol%) is investigated in simulated body fluid (SBF) mainly with respect to bioactivity and silver ions release. In order to estimate the biodegradability and bioactivity, the samples were soaked in SBF, which has almost equal ions concentration to those of human blood plasma, and kept at 37 °C for fixed periods of time up to 18 days. After the fixed periods of time analyses were performed on the SBF solutions. Calcium and silver ions concentration of SBF after different soaking times of the glass samples were primarily examined. Conductivity data support the assumption that the released silver ions are reduced in SBF and their release is obstructed by growth of the bioactive layer on the glass surface. X-ray diffraction and infrared analysis attest the development on glass surface of a hydroxyapatite type layer.  相似文献   

18.
Glasses of the xEu2O3 · (100?x)[2Bi2O3 · B2O3] system with 0 ? x ? 25 mol% have been characterized by X-ray diffraction and FTIR spectroscopy measurements. Melting at 1100 °C and the rapid cooling at room temperature permitted us to obtain glass samples. In order to improve the local order and to develop crystalline phases, the glass samples were kept at 625 °C for 24 h. After heat treatment two crystalline phases were put into evidence. One of the crystalline phases was observed for the host glass matrix, the x = 0 mol% sample, and belongs to the cubic system. The second one was observed for the x = 25 mol% sample and was find to be orthorhombic with two unit cell parameters very close to each other. For the samples with 0 < x < 25 mol% there is a mixture of the two mentioned phases. FTIR spectroscopy data suggest that both Bi2O3 and B2O3 play the glass network former role while the europium ions play the network modifier role in the studied glasses.  相似文献   

19.
Sodium tracer diffusion coefficients, D*Na, have been measured using the radioactive isotope Na-22 in sodium boroaluminosilicate (NBAS) glasses containing either a small amount of As2O3 or Fe2O3. The chemical compositions of the first type of glasses are given by the formula [(Na2O)0.71(Fe2O3)0.05(B2O3)0.24]0.2[(SiO2)x(Al2O3)1 ? x]0.8 and those of the second type of glasses correspond to the formula [(Na2O)0.73(B2O3)0.24(As2O3)0.03]0.18[(SiO2)x(Al2O3)1 ? x]0.82. Tracer diffusion measurements were performed at different temperatures between 198 and 350 °C. Pre-annealing of the glass samples at their glass transition temperatures in common air was found to lead to changes in the values of sodium tracer diffusion coefficients. For the NBAS glasses containing Fe2O3, after pre-annealing for 5 h, the activation enthalpy derived for the sodium tracer diffusion increases almost linearly from 57.5 to 71.3 kJ/mol with a decrease in the alumina content while the pre-exponential factor of the sodium tracer diffusion coefficient increases from 2.1 · 10? 4 to 5.3 · 10? 4 cm2/s. For the iron-free NBAS glasses pre-annealed for 5 h, the activation enthalpy varies between 63.9 and 71.4 kJ/mol while the pre-exponential factor varies between 1.5 · 10? 4 and 1.2 · 10? 3 cm2/s. In addition, it was observed that the considered glasses take up water when annealed at 300 °C in wet air with PH2O = 474 mbar.  相似文献   

20.
In order to crystallize a large quantity of the lithium?mica in glass?ceramics, 5.1 mass% MgF2 was added to the starting materials of the parent glasses having chemical compositions of Li(1+x)Mg3AlSi3(1+x)O10+6.5xF2 (x = 0.5 and 1.0). Transparent glass?ceramics, in which a large quantity of lithium?mica with particle size of <50 nm was separated, could be prepared from the MgF2-added parent glass with x = 0.5. While the parent glass, which had a binodal phase separation structure, did not exhibit electrical conductivity, the transparent glass–ceramic was given conductivity by the formation of an interlocking structure of mica. As the separated mica formed a tighter interlocking structure, the conductivity increased and reached a value of 2.0 × 10?3 S/cm at 600 °C. The MgF2-added parent glass with x = 1.0 was not transparent because of coarse spinodal phase separation. The conductivity was 4.3 × 10?4 S/cm at 600 °C but was significantly decreased by the separation of mica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号