共查询到20条相似文献,搜索用时 15 毫秒
1.
The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids II: Extension to high order finite volume schemes 总被引:1,自引:0,他引:1
In this paper, the multidimensional limiter for the second order finite volume schemes on the unstructured grid, namely the Weighted Biased Average procedure developed in our previous paper is extended to high order finite volume schemes solving hyperbolic conservation laws. This extension relies on two key techniques: the secondary reconstruction and the successive limiting procedure. These techniques are discussed in detail in the present paper. Numerical experiments shows that this limiting procedure is very effective in removing numerical oscillations in the vicinity of discontinuities. And furthermore this procedure is efficient, robust and accuracy preserving. 相似文献
2.
In [10], the authors have designed a new fifth order WENO finite-difference scheme by adding a higher order smoothness indicator which is obtained as a simple and inexpensive linear combination of the already existing low order smoothness indicators. Moreover, this new scheme, dubbed as WENO-Z, has a CPU cost which is equivalent to the one of the classical WENO-JS [2], and smaller than that of the mapped WENO-M, [5], since it involves no mapping of the nonlinear weights. In this article, we take a closer look at Taylor expansions of the Lagrangian polynomials of the WENO substencils and the related inherited symmetries of the classical lower order smoothness indicators to obtain a general formula for the higher order smoothness indicators that allows the extension of the WENO-Z scheme to all (odd) orders of accuracy. We further investigate the improved accuracy of the WENO-Z schemes at critical points of smooth solutions as well as their distinct numerical features as a result of the new sets of nonlinear weights and we show that regarding the numerical dissipation WENO-Z occupies an intermediary position between WENO-JS and WENO-M. Some standard numerical experiments such as the one dimensional Riemann initial values problems for the Euler equations and the Mach 3 shock density-wave interaction and the two dimensional double-Mach shock reflection problems are presented. 相似文献
3.
In this paper, a family of sub-cell finite volume schemes for solving the hyperbolic conservation laws is proposed and analyzed in one-dimensional cases. The basic idea of this method is to subdivide a control volume (main cell) into several sub-cells and the finite volume discretization is applied to each of the sub-cells. The averaged values on the sub-cells of current and face neighboring main cells are used to reconstruct the polynomial distributions of the dependent variables. This method can achieve arbitrarily high order of accuracy using a compact stencil. It is similar to the spectral volume method incorporating with PNPM technique but with fundamental differences. An elaborate utilization of these differences overcomes some shortcomings of the spectral volume method and results in a family of accurate and robust schemes for solving the hyperbolic conservation laws. In this paper, the basic formulation of the proposed method is presented. The Fourier analysis is performed to study the properties of the one-dimensional schemes. A WENO limiter based on the secondary reconstruction is constructed. 相似文献
4.
We construct uniformly high order accurate schemes satisfying a strict maximum principle for scalar conservation laws. A general framework (for arbitrary order of accuracy) is established to construct a limiter for finite volume schemes (e.g. essentially non-oscillatory (ENO) or weighted ENO (WENO) schemes) or discontinuous Galerkin (DG) method with first order Euler forward time discretization solving one-dimensional scalar conservation laws. Strong stability preserving (SSP) high order time discretizations will keep the maximum principle. It is straightforward to extend the method to two and higher dimensions on rectangular meshes. We also show that the same limiter can preserve the maximum principle for DG or finite volume schemes solving two-dimensional incompressible Euler equations in the vorticity stream-function formulation, or any passive convection equation with an incompressible velocity field. Numerical tests for both the WENO finite volume scheme and the DG method are reported. 相似文献
5.
K.R. Arun M. Kraft M. Luká?ová-Medvid’ová Phoolan Prasad 《Journal of computational physics》2009,228(2):565-590
We present a generalization of the finite volume evolution Galerkin scheme [M. Luká?ová-Medvid’ová, J. Saibertov’a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533– 562; M. Luká?ová-Medvid’ová, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1–30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor–corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme. 相似文献
6.
We study three methods for solving the Cauchy problem for a system of non-linear hyperbolic balance laws with initial condition consisting of two smooth vectors, with a discontinuity at the origin, a high-order Riemann problem. Two of the methods are new; one of the them results from a re-interpretation of the high-order numerical methods proposed by Harten et al. [A. Harten, B. Engquist, S. Osher, S.R. Chakravarthy, Uniformly high order accuracy essentially non-oscillatory schemes III, J. Comput. Phys. 71 (1987) 231–303] and the other is a modification of the solver in [E.F. Toro, V.A. Titarev, Solution of the generalised Riemann problem for advection-reaction equations, Proc. Roy. Soc. London A 458 (2002) 271–281]. A systematic assessment of all three solvers is carried out and their relative merits are discussed. We also implement the solvers, locally, in the context of high-order finite volume numerical methods of the ADER type, on unstructured meshes. Schemes of up to fifth order of accuracy in space and time for the two-dimensional compressible Euler equations and the shallow water equations with source terms are constructed. Empirically obtained convergence rates are studied systematically and, for the tests considered, these correspond to the theoretically expected orders of accuracy. We also address the question of balance between flux gradients and source terms, for steady flow. We find that the ADER schemes may be termed asymptotically well-balanced, in the sense that the well-balanced property is attained as the order of the method increases, and this without introducing any ad-hoc fixes to the schemes or the equations. 相似文献
7.
The Osher–Chakrabarthy family of linear flux-modification schemes is considered. Improved lower bounds on the compression factors are provided, which suggest the viability of using the unlimited version. The LLF flux formula is combined with these schemes in order to obtain efficient finite-difference algorithms. The resulting schemes are applied to a battery of numerical tests, going from advection and Burgers equations to Euler and MHD equations, including the double Mach reflection and the Orszag–Tang 2D vortex problem. Total-variation-bounded (TVB) behavior is evident in all cases, even with time-independent upper bounds. The proposed schemes, however, do not deal properly with compound shocks, arising from non-convex fluxes, as shown by Buckley–Leverett test simulations. 相似文献
8.
A large time step (LTS) Godunov scheme firstly proposed by LeVeque is further developed in the present work and applied to Euler equations. Based on the analysis of the computational performances of LeVeque’s linear approximation on wave interactions, a multi-wave approximation on rarefaction fan is proposed to avoid the occurrences of rarefaction shocks in computations. The developed LTS scheme is validated using 1-D test cases, manifesting high resolution for discontinuities and the capability of maintaining computational stability when large CFL numbers are imposed. The scheme is then extended to multidimensional problems using dimensional splitting technique; the treatment of boundary condition for this multidimensional LTS scheme is also proposed. As for demonstration problems, inviscid flows over NACA0012 airfoil and ONERA M6 wing with given swept angle are simulated using the developed LTS scheme. The numerical results reveal the high resolution nature of the scheme, where the shock can be captured within 1–2 grid points. The resolution of the scheme would improve gradually along with the increasing of CFL number under an upper bound where the solution becomes severely oscillating across the shock. Computational efficiency comparisons show that the developed scheme is capable of reducing the computational time effectively with increasing the time step (CFL number). 相似文献
9.
Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes 总被引:1,自引:0,他引:1
In this paper we consider the very high order approximation of solutions of the Euler equations. We present a systematic generalization of the residual distribution method of [1] to very high order of accuracy, by extending the preliminary work discussed in [2] to systems and hybrid meshes. We present extensive numerical validation for the third and fourth order cases with Lagrange finite elements. In particular, we demonstrate that we both have a non-oscillatory behavior, even for very strong shocks and complex flow patterns, and the expected accuracy on smooth problems. 相似文献
10.
Denys Dutykh Theodoros Katsaounis Dimitrios Mitsotakis 《Journal of computational physics》2011,230(8):3035-3061
Finite volume schemes are commonly used to construct approximate solutions to conservation laws. In this study we extend the framework of the finite volume methods to dispersive water wave models, in particular to Boussinesq type systems. We focus mainly on the application of the method to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given to important nonlinear phenomena such as solitary waves interactions, dispersive shock wave formation and the runup of breaking and non-breaking long waves. 相似文献
11.
This paper presents a finite volume local evolution Galerkin (FVLEG) scheme for solving the hyperbolic conservation laws. The FVLEG scheme is the simplification of the finite volume evolution Galerkin method (FVEG). In FVEG, a necessary step is to compute the dependent variables at cell interfaces at tn + τ (0 < τ ? Δt). The FVLEG scheme is constructed by taking τ → 0 in the evolution operators of FVEG. The FVLEG scheme greatly simplifies the evaluation of the numerical fluxes. It is also well suited with the semi-discrete finite volume method, making the flux evaluation being decoupled with the reconstruction procedure while maintaining the genuine multi-dimensional nature of the FVEG methods. The derivation of the FVLEG scheme is presented in detail. The performance of the proposed scheme is studied by solving several test cases. It is shown that FVLEG scheme can obtain very satisfactory numerical results in terms of accuracy and resolution. 相似文献
12.
It is of utmost interest to control the divergence of the magnetic flux in simulations of the ideal magnetohydrodynamic equations since, in general, divergence errors tend to accumulate and render the schemes unstable. This paper presents a higher-order extension of the locally divergence-preserving procedure developed in Torrilhon [M. Torrilhon, Locally divergence-preserving upwind finite volume schemes for magnetohydrodynamic equations, SIAM J. Sci. Comput. 26 (2005) 1166–1191]; a fourth-order accurate local redistribution of the numerical magnetic field fluxes of a finite volume base scheme is introduced. The redistribution ensures that a fourth-order accurate discrete divergence operator is preserved to round off errors when applied to the cell averages of the magnetic flux density. The developed procedure is applicable to generic semi-discrete finite volume schemes and its purpose is to stabilize the schemes using a local procedure that respects the accuracy of the base scheme to a greater extent than the previous second-order achievements. Numerical experiments that demonstrate the properties of the new procedure are also presented. 相似文献
13.
Jan Fischer 《Physics Reports》1981,76(3):157-214
We review the general properties of particle scattering at extremely high energy and fixed momentum transfer, concentrating on features which can be derived from analyticity, crossing symmetry, unitarity and other general principles. The progress since 1973 is reported; it is pointed out that the rigorous approach yields fairly tight high-energy correlations between the phase and the modulus of the crossing-even as well as the crossing-odd forward scattering amplitude, without assuming any particular model of the interaction mechanism. The approach becomes particularly predictive when the formalism is supplemented by the phenomenological assumption that the total cross section rises unboundedly at high energies. Relation of the results to existing hadron-hadron scattering data and to future experiments is discussed. 相似文献
14.
Cheng Wang Xiangxiong Zhang Chi-Wang Shu Jianguo Ning 《Journal of computational physics》2012,231(2):653-665
One of the main challenges in computational simulations of gas detonation propagation is that negative density or negative pressure may emerge during the time evolution, which will cause blow-ups. Therefore, schemes with provable positivity-preserving of density and pressure are desired. First order and second order positivity-preserving schemes were well studied, e.g., [6], [10]. For high order discontinuous Galerkin (DG) method, even though the characteristicwise TVB limiter in [1], [2] can kill oscillations, it is not sufficient to maintain the positivity. A simple solution for arbitrarily high order positivity-preserving schemes solving Euler equations was proposed recently in [22]. In this paper, we first discuss an extension of the technique in [22], [23], [24] to design arbitrarily high order positivity-preserving DG schemes for reactive Euler equations. We then present a simpler and more robust implementation of the positivity-preserving limiter than the one in [22]. Numerical tests, including very demanding examples in gaseous detonations, indicate that the third order DG scheme with the new positivity-preserving limiter produces satisfying results even without the TVB limiter. 相似文献
15.
16.
In Zhang and Shu (2010) [20], Zhang and Shu (2011) [21] and Zhang et al. (in press) [23], we constructed uniformly high order accurate discontinuous Galerkin (DG) and finite volume schemes which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics. In this paper, we present an extension of this framework to construct positivity-preserving high order essentially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) finite difference schemes for compressible Euler equations. General equations of state and source terms are also discussed. Numerical tests of the fifth order finite difference WENO scheme are reported to demonstrate the good behavior of such schemes. 相似文献
17.
Dinshaw S. Balsara 《Journal of computational physics》2012,231(22):7504-7517
Several computational problems in science and engineering are stringent enough that maintaining positivity of density and pressure can become a problem. We build on the realization that positivity can be lost within a zone when reconstruction is carried out in the zone. We present a multidimensional, self-adjusting strategy for enforcing the positivity of density and pressure in hydrodynamic and magnetohydrodynamic (MHD) simulations. The MHD case has never been addressed before, and the hydrodynamic case has never been presented in quite the same way as done here. The method examines the local flow to identify regions with strong shocks. The permitted range of densities and pressures is also obtained at each zone by examining neighboring zones. The range is expanded if the solution is free of strong shocks in order to accommodate higher order non-oscillatory reconstructions. The density and pressure are then brought into the permitted range. The method has also been extended to MHD. It is very efficient and should extend to discontinuous Galerkin methods as well as flows on unstructured meshes.Media player
18.
In developing suitable numerical techniques for computational aero-acoustics, the dispersion-relation-preserving (DRP) scheme by Tam and co-workers and the optimized prefactored compact (OPC) scheme by Ashcroft and Zhang have shown desirable properties of reducing both dissipative and dispersive errors. These schemes, originally based on the finite difference, attempt to optimize the coefficients for better resolution of short waves with respect to the computational grid while maintaining pre-determined formal orders of accuracy. In the present study, finite volume formulations of both schemes are presented to better handle the nonlinearity and complex geometry encountered in many engineering applications. Linear and nonlinear wave equations, with and without viscous dissipation, have been adopted as the test problems. Highlighting the principal characteristics of the schemes and utilizing linear and nonlinear wave equations with different wavelengths as the test cases, the performance of these approaches is documented. For the linear wave equation, there is no major difference between the DRP and OPC schemes. For the nonlinear wave equations, the finite volume version of both DRP and OPC schemes offers substantially better solutions in regions of high gradient or discontinuity. 相似文献
19.
Long-time effect of relaxation for hyperbolic conservation laws 总被引:2,自引:0,他引:2
I-Liang Chern 《Communications in Mathematical Physics》1995,168(1):39-55
In processes such as invasion percolation and certain models of continuum percolation, in which a possibly random labelf(b) is attached to each bondb of a possibly random graph, percolation models for various values of a parameterr are naturally coupled: one can define a bondb to be occupied at levelr iff(b)r. If the labeled graph is stationary, then under the mild additional assumption of positive finite energy, a result of Gandolfi, Keane, and Newman ensures that, in lattice models, for each fixedr at which percolation occurs, the infinite cluster is unique a.s. Analogous results exist for certain continuum models. A unifying framework is given for such fixed-r results, and it is shown that if the site density is finite and the labeled graph has positive finite energy, then with probability one, uniqueness holds simultaneously for all values ofr. An example is given to show that when the site density is infinite, positive finite energy does not ensure uniqueness, even for fixedr. In addition, with finite site density but without positive finite energy, one can have fixed-r uniqueness a.s. for eachr, yet not have simultaneous uniqueness.Research supported by NSF grant DMS-9206139 相似文献
20.
对流占优扩散问题的高精度直线法 总被引:1,自引:1,他引:1
基于常微分方程边值问题的高精度求解器SEVORD对偏微分方程作半离散,提出了求解一维对流扩散方程的高精度直线法,并采用局部一维化方法(LOD)给出了求解二维对流扩散问题的高精度交替方向直线法。 相似文献