首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Non》2007,353(24-25):2333-2345
The cogelation process, i.e. the co-polymerization of a metal complex with the gel precursors, was used for the synthesis of transition metal-doped resorcinol–formaldehyde gels. The aim of this process is to anchor the metal to the polymer so that the former does not sinter during the pyrolysis step leading to porous carbon. Cu-, Ni-, Pd- or Pt-loaded gels were prepared by this technique. After drying and pyrolysis, Pd and Pt were obtained as metal nanoparticles (2–5 nm in diameter) inserted in the carbon nodules, when the complexing agent and the synthesis conditions were well chosen. These small metal particles were inaccessible to reactive gases, probably due to carbon deposit at the metal surface during pyrolysis: CO almost did not chemisorb. Oxidation of the support or pyrolysis under reductive atmosphere was applied to the metal-doped gels and carbons in order to make the surface of the metal particles accessible, but these treatments develop the macropores only. The cogelation process is then suitable to prepare metal nanoparticles protected from the outside by encapsulation in the carbon matrix.  相似文献   

2.
Textural properties of carbon gels can be controlled by varying the synthesis and drying process conditions. In this work, the influence of the initial pH and the drying method on the final properties of carbon gels, synthesized using methanol as a solvent, was evaluated. Furthermore, the use of microwaves as a drying method for the synthesis of carbon xerogels was assessed. In the light of the results obtained, in order to synthesize monolithic and microporous carbon gels in a short period of time, the use of a multimode microwave oven is proposed. The use of pH 7 also leads to shorter gelation times and more consistent monoliths. Furthermore, the multimode microwave drying can produce homogeneous microporosity and surface areas of up to 1341 m2 g?1, in a very short time (i.e., only 6 min is required for the drying step).  相似文献   

3.
Resorcinol-formaldehyde gels were produced at 50, 70 and 90 °C and with three different R/C ratios (500, 1000 and 2000). The effect of these variables combined with that of aging time was studied in order to optimize the synthesis conditions. The convective air-drying process was used, and the drying duration was studied with regard to the synthesis conditions. The aging time has no effect on the pore texture after 24 h at 90 °C or 48 h at 70 °C, whatever the R/C value. The synthesis-aging step can be shortened by increasing the temperature. Nevertheless, the pore size tends then to decrease, especially when R/C is high, but this can be counterbalanced by increasing R/C. Moreover, bubbles often appear in the gel at high synthesis temperature, which limits the temperature to about 70 °C in the case of monolithic parts. At 70 °C and with an air velocity of 2 m/s, the elimination of 90% of the solvent requires 1 h drying when the pore size reaches 400-600 nm, 2.5 h for 50 nm wide pores and 3 h when the pore size decreases to 15-20 nm. The drying duration does not exceed 8 h in all cases and could be shortened by increasing the temperature at the end of the process.  相似文献   

4.
The lower cost and higher hydrophilicity of silica xerogels could make them potential substitutes for perfluorosulfonic polymeric membranes in proton exchange membrane fuel cells (PEMFCs). For that purpose, we need to obtain micro or micro and mesoporous silica xerogels with a high porosity. The preparation of micro (<2 nm) and micro and mesoporous silica xerogels (2<dporesize10 nm) from particulate as oppossed to polymeric suspensions of silica using tetraethyl orthosilicate (TEOS) as precursor is used. Two techniques of varying packing density have been performed in this work: (1) Control of the aggregation degree in the sol by adjusting its pH before gelation (pH 5, 6 and 8) and (2) Mixture of sols with a different average particle size (particles formed under acid and base catalyzed reactions). Proton conductivity of the obtained xerogels was studied as a function of temperature and relative humidity (RH). High pore volume, high porosity and small pore size SiO2 xerogels have been achieved in the calcination temperature range from 250 to 550 °C. The calcined xerogels showed microporosity or micro and mesoporosity in the whole range of calcination temperatures. By mixing sols (molar ratio: acid/base=4.8) porosities up to 54.7±0.1% are achieved, at 250 °C of firing temperature. According to EMF measurements, electrical transport is due to protons in this kind of materials. The proton conductivity of the studied xerogels increased linear with measured temperature. A S-shaped dependence of the conductivity with the RH was observed with the greatest increase noted between 58% and 81% RH. Xerogels with a low porosity (40.8±0.1%) and an average pore size less than 2.0 nm showed lower values of proton conductivity than that of xerogels with a higher porosity and a higher average pore size in the whole range of temperature and RH. When silica xerogels, with the highest conductivity, are treated at pH 1.5, that property increased from 2.84×10−3±5.11×10−5 S/cm to 4.0×10−3±7.2×10−5 S/cm, at 81% RH and 80 °C. It indicates that the surface site density of these materials has a strong effect on conductivity. Proton conductivity values achieved are less than one order of magnitude lower than that of Nafion, under the same conditions of temperature and RH.  相似文献   

5.
《Journal of Non》2006,352(26-27):2763-2771
The synthesis of silica with preserved porosity and tailored morphology by sol–gel process can be achieved by hybrid organic–inorganic synthesis: a modified alkoxide, viz. 3-(2-aminoethylamino)propyltrimethoxysilane (EDAS), is introduced during the base catalysed synthesis with TEOS as main silica precursor. Additives with methoxy groups induce a nucleation mechanism because of their higher reactivity compared to main reagents with ethoxy groups. The nucleation model presented in previous papers was refined by taking into account the porosity of the particles and calculating the number of additive molecules by nucleus for each value of the ratio of additive/main reagent. The extrapolation of the synthesis process to semi-industrial scale goes through the replacement of laboratory grade reagents by industrial grade reagents and the scaling up to the production of higher quantities. At each of these two steps, the morphology and porosity of the samples has been compared to those of laboratory grade samples. It was shown that the texture and particle size has quasi totally been preserved.  相似文献   

6.
Poly(vinyl alcohol)/silica hybrid xerogels were prepared from sonohydrolysis of tetraethoxysilane (TEOS) and additions of water-solution of poly(vinyl alcohol) (PVA). The samples were studied by small-angle X-ray scattering (SAXS), nitrogen adsorption, and differential scanning calorimetry (DSC). On drying at room temperature the resulting xerogels exhibit a fairly bimodal porous structure composed by small mesopores and micropores. The pore size distribution of the mesopores was found to follow approximately a power-law with the pore size. The micropore structure was associated to an evolution at a high resolution level of the mass fractal structure of the original wet gels. The role of the PVA addition on the pore structure of the xerogels is to diminish the specific surface area and the pore volume without to change substantially the pore mean size.  相似文献   

7.
The incorporation of an additive during sol-gel synthesis reduces shinkage during ambient drying. The following additives have been studied: 3-(2-aminoethylamino)propyltrimethoxysilane (EDAS), 3-aminopropyltriethoxysilane (AES) and 3-(2-aminoethylamino)propyltriethoxysilane (EDAES) and the main silica precursors were tetraethylorthosilicate (TEOS) and tetrapropylorthosilicate (TPOS). When the additive contains methoxy groups (EDAS), it acts as a nucleation agent of the silica particles and exactly the same properties (pore volume, specific surface area, particle and aggregate size) are obtained whether the main reagent is TEOS or TPOS. The nucleation mechanism is based on the difference in reactivity between additive and main reagent. In case of nucleation by the additive, the nucleation agent fixes the properties whatever the main silica precursor is. When both the additive and the main reagent contain ethoxy groups (series AES-TEOS and EDAES-TEOS), there is no nucleation mechanism by the additive, and the silica particle size remains nearly constant. With less reactive main reagent (series AES-TPOS and EDAES-TPOS), pore volumes up to 17 cm3/g have been obtained with pore sizes up to nearly 10 μm and very big particles (∼100 nm). The absence of nucleation by the additive for the couples AES-TPOS and EDAES-TPOS could be due to the fact that the difference in reactivity between ethoxy groups and propoxy groups is not sufficient to initiate the nucleation mechanism by the additive. In the absence of nucleation by the additive, the main reagent plays a role: highly porous materials with very large pores are prepared with TPOS.  相似文献   

8.
The hybrid naphthaleneaminepropylsilica material was obtained by a sol-gel route, varying the organic loading and the water/TEOS molar ratio. Infrared spectroscopy was used to identify the organic and inorganic phases. The morphology of the hybrid material was studied by using scanning electron microscopy and N2 adsorption-desorption isotherms. It was observed that the increase in the organic content produces a decrease in the size and volume of the pores as well as in the surface area of the xerogel. The best porosity was obtained for water/TEOS molar ratio between 4 and 6.  相似文献   

9.
《Journal of Non》2007,353(16-17):1546-1559
Organic acids were previously shown to be involved in the alteration of historic soda silicate glasses in humid atmospheres under museum storage conditions. The present study investigates the role of these pollutants on the visual, compositional and structural modification of soda silicate glasses. Replica glasses aged in humid or humid/acidic atmospheres under accelerated conditions were examined and compared using light microscopy, electron microprobe and Raman spectroscopy. The characteristic modifications induced by each atmosphere are described. In the acid polluted atmosphere the leaching process created a layer that retained the transparency of the glass but with a chemical structure hydrated and more polymerized following the loss of alkali and the associated non-bridging oxygens, and the formation of new bridging bonds. In an unpolluted humid atmosphere, the dissolution process caused disruption of the silicate network at the glass surface and formation of an opaque gel layer. The hydrated silicate species and the cations in this gel layer subsequently polymerized to form a new amorphous material, hydrated and more depolymerized than the original glass. This investigation confirms that organic acid pollutants are responsible for the modifications observed on altered historic soda silicate glasses in the collections of the National Museums of Scotland.  相似文献   

10.
《Journal of Non》1999,243(2-3):209-219
Undoped and Mn2+-doped silica xerogels were prepared from hydrolysis and condensation of tetramethyl orthosilicate (TMOS). The xerogels were characterised by density measurements and fluorescence and Raman spectroscopies. Raman measurements over the range 4–1200 cm−1 showed that the number of three- and four-membered rings in the xerogel network depends on the thermal treatment and on the concentration of Mn2+ ions. Indeed, both structures are found to be more numerous in the gel network of the doped samples than in the undoped one, showing that doping with Mn2+ hampers the destruction of three- and four-membered rings. In the low-wave number region (4–100 cm−1), doping with manganese ions was found to affect the position of the boson peak. The boson peak profiles were used to deduce that the sizes of the cohesive domains in the gel-derived silica network are much larger for doped samples (11 nm for 500 ppm) than for undoped ones (2.1 nm).  相似文献   

11.
Organic and carbon aerogels were prepared by sol–gel polymerization of phenol, melamine and formaldehyde, followed by supercritical drying and pyrolysis. The effect of the mole ratio of melamine/phenol (M/P) on microstructure of organic and carbon aerogels was investigated by N2 adsorption, SEM and TEM. Coordination M/P could change the hydrophilicity and cross-linking density of polymer framework, thereby affecting polymer colloid nanoparticle nucleation and growth, and ultimately determine the 3-dimensional network of the gels. The bulk densities of organic and carbon aerogels have maxima at M/P of 0.1, which are inversely proportional to volume shrinkage of gels during drying and pyrolysis. The size of the nanoparticles could be adjusted by varying M/P in the range from 10 to 22 nm. The mesopore volumes of organic and carbon aerogels are tailored in the range of 1.4–2.9 and 0.8–2.5 cm3/g, respectively. The average mesopore diameter has experienced a decreasing first and increasing afterward tendency with the increase of M/P, and exhibit a minimum at M/P of 0.1.  相似文献   

12.
《Journal of Non》2002,311(2):185-194
Alkoxysilanes, low-viscosity monomers that polymerize into the porous network of stone by a sol-gel process, are widely used in the restoration of stone buildings. We have used the mercury porosimetry technique to characterize changes in microstructure of three granites following their consolidation with two popular commercial products (Wacker OH and Tegovakon V). The suitability of this technique is questioned because a surprising increase of stone porosity is observed. In order to investigate the feasibility of porosimetry, we analyze the behavior of xerogels prepared from the two commercial products, under mercury pressure. Gels are basically compacted and not intruded by mercury. Thus, the increase of stone porosity after consolidation can actually be associated with gel shrinkage. Mercury porosimetry, therefore, has been found unsuitable for characterizing the microstructure of consolidated rocks. However, it can be employed usefully to evaluate shrinkage of gels under mercury pressure, which permits the behavior of a consolidant during the process of drying in stone to be predicted. It is a key factor because many problems of consolidants are related to their drying process within the stone. Gels under study exhibit a high rigidity and an elastic behavior, as consequence of their microporous structure. Finally, the reduction in the porous volume of gels after the porosimetry test demonstrates that the shrinkage mechanism is based on pore collapse.  相似文献   

13.
As previously reported, mass-growth of iron whiskers can be achieved by reduction of halide admixed with carbon black. In order to investigate the role of added carbon black on iron whisker growth, the growth rates and morphology have been investigated. It was found that the effect is related to an adsorption process at the tip growth sites which are limiting the reaction. The heat of adsorption of the halide increases and markedly multi-nucleous growth and large growth rates appear on many whiskers. There is no effect of carbon black below 500°C since the vapor pressure of the adsorbed halide is small.  相似文献   

14.
The xerogels of methylsilicone doped with TiO2 were prepared by incorporation of liquid-phase prepared TiO2 in methylsilicone matrix. The microstructure and properties of the composite xerogels were investigated by Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), N2 sorption, and wide-angle X-ray powder diffraction (XRD). The results indicated that the as-prepared TiO2 particles could be well dispersed in methylsilicone matrix. The different amounts of TiO2 doped in methylsilicone oligomer solution resulted in different reaction process and microstructure. The thermal stability of the composite monolith was enhanced after doping TiO2 particles.  相似文献   

15.
The effect of charge memory in composites based on polymer molecules has been investigated. Resistive switchings in sandwich samples prepared by lamination from commercially available polymers (polystyrene and poly(2,3-dihydrothieno-1,4-dioxine)-poly(styrene sulphonate) are analyzed. It is shown that the characteristic switching times in the composite samples reach several nanoseconds and the number of switchings exceeds 106. Switchings are observed in electric fields much below the breakdown threshold, which indicates the absence of destructive processes in the polymer.  相似文献   

16.
Carbon aerogels with high BET surface area were developed by sol-gel polycondensation of resorcinol and furfural in isopropanol using hexamethylenetetramine (HMTA) as a catalyst, and then directly drying the organic gels under isopropanol supercritical conditions, followed by carbonization under a nitrogen atmosphere. The preparation conditions of carbon aerogels were explored by changing the mole ratio of resorcinol to basic catalyst HMTA (R/C), the ratio of resorcinol to isopropanol (R/I), and the mole ratio of resorcinol to furfural (R/F). The effect of these preparation conditions on the porous structure of the carbon aerogels obtained was studied by nitrogen adsorption isotherms. According to the characterizations of TEM, SEM and nitrogen adsorption, the carbon aerogels obtained have a three-dimensional network that consists of carbon nano-particles with size from 20 to 30 nm, which define numerous micropores, mesopores and macropores. HMTA reacts not only as a catalyst but also as a reagent in the gelation polymerization. XRD characterization indicates that carbon aerogels have disordered nanocrystalline structures similar to activated carbon.  相似文献   

17.
18.
K. Oodo 《Journal of Non》2011,357(2):683-685
Differential scanning calorimetry (DSC) measurements were performed for water confined within mesoporous silica substrates of TMPS-4 and TMPS-4M (TMPS-4 modified with 3-aminopropyltriethoxysilane) with highly ordered cylindrical channels. The pore diameter of TMPS-4M estimated by the DSC measurements corresponds to the results obtained by nitrogen adsorption measurements.  相似文献   

19.
《Journal of Non》2005,351(49-51):3671-3676
Hydrogenated carbon nitride (a-CN:H films) were deposited on n-type (1 0 0) silicon substrates making use of dual direct current radio frequency plasma enhanced chemical vapor deposition (DC-RF-PECVD), at working pressure of 2–20 Pa, using a mixed gas of CH4 and N2 as the source gas. The growth rate, composition, bonding structure of the deposited films were characterized by means of XPS and FTIR, and the mechanical properties of the deposited films were investigated by nano-indentation test. It was found that the parameters for the DC-RF-PECVD process had significant effects on the growth rate, structure and properties of the deposited films. The growth rate of the deposited films increased at first with increasing deposition pressure, then saturated with further increase of the deposition pressure. The N/C ratio inside the deposited films increased with increasing working pressure except that it was as much as 0.50 at a working pressure of 5.0 Pa. The nano-hardness of the films decreased with increasing deposition pressure. CN radicals were remarkably formed in the deposited films at higher pressures, and their contents are related to the nitrogen concentrations in the deposited films.  相似文献   

20.
Crystallographic features of GaSb grown by the Bridgman procedure were investigated by scanning electron microscopy. Chemical etching and the electron channelling method were used to determine the position and crystallographic orientation of crystallites. A pronounced 〈110〉 texture was detected which was misaligned by 5÷28° with respect to the main axes of the ingots. Boundaries were categorized according to the orientation change accross them. Results were compared. The majority of small angle boundaries are probably caused by thermal stresses induced dislocation migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号