首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The continuous deposition of microcrystalline silicon has been monitored with in-situ Raman spectroscopy. The process and measurement settings were chosen such that one spectrum was taken during approximately 9 nm of layer growth. This allows observing the crystallinity in the initial growth phase of microcrystalline silicon absorber layers. The influence of different p-doped seed layers has been studied. Under constant deposition conditions, an initial decrease in crystallinity was observed over the first tens of nanometers. By profiling the process gas flows during the initial phase it was possible to reduce the amount of amorphous material that was detected during the initial phase of deposition.  相似文献   

2.
N-type microcrystalline silicon carbide layers prepared by hot-wire chemical vapor deposition were used as window layers for microcrystalline silicon n–i–p solar cells. The microcrystalline silicon intrinsic and p-layers of the solar cells were prepared with plasma-enhanced chemical vapor deposition at a very high frequency. Amorphous silicon incubation layers were observed at the initial stages of the growth of the microcrystalline silicon intrinsic layer under conditions close to the transition from microcrystalline to amorphous silicon growth. ‘Seed layers’ were developed to improve the nucleation and growth of microcrystalline silicon on the microcrystalline silicon carbide layers. Raman scattering measurement demonstrates that an incorporation of a ‘seed layer’ can drastically increase the crystalline volume fraction of the total absorber layer. Accordingly, the solar cell performance is improved. The correlation between the cell performance and the structural property of the absorber layer is discussed. By optimizing the deposition process, a high short-circuit current density of 26.7 mA/cm2 was achieved with an absorber layer thickness of 1 μm, which led to a cell efficiency of 9.2%.  相似文献   

3.
The influence of the crystalline volume fraction of hydrogenated microcrystalline silicon on the device performance of thin-film transistors fabricated at temperatures below 200 °C was investigated. Transistors employing microcrystalline silicon channel material prepared close to the transition to amorphous growth regime exhibit the highest charge carrier mobilities exceeding 50 cm2/V s. The device parameters like the charge carrier mobility, the threshold voltage and the subthreshold slope will be discussed with respect to the crystalline volume fraction of the intrinsic microcrystalline silicon material.  相似文献   

4.
《Journal of Non》2006,352(9-20):896-900
In this study, employing a high-density, low-temperature SiH4–H2 mixture microwave plasma, we investigate the influence of source gas supply configuration on deposition rate and structural properties of microcrystalline silicon (μc-Si) films, and demonstrate the plasma parameters for fast deposition of highly crystallized μc-Si films with low defect density. A fast deposition rate of 65 Å/s has been achieved for a SiH4 concentration of 67% diluted in H2 with a high Raman crystallinity of Xc > 65% and a low defect density of (1–2) × 1016 cm−3 by adjusting source gas supply configuration and plasma conditions. A sufficient supply of deposition precursors, such as SiH3, as well as atomic hydrogen H on film growing surface is effective for the high-rate synthesis of highly crystallized μc-Si films, for the reduction in defect density, and for the improvement in film homogeneity and compactability. A preliminary result of p–i–n structure μc-Si thin-film solar cells using the resulting μc-Si films as an intrinsic absorption layer is presented.  相似文献   

5.
In this article, we investigate the influence of AlGaAs and GaP window layers on the device performance of 650 nm AlGaInP/GaInP multi-quantum-well (MQW) light-emitting diodes (LEDs) grown by metalorganic chemical-vapor deposition. The AlGaInP/GaInP MQW structure with different window layers are characterized by double-crystal X-ray diffraction, secondary ion mass spectrometry and photoluminescence. By using the AlGaAs window layer, the LEDs have a lower cut-in voltage, a smaller dynamic series resistance and a higher breakdown voltage, while the LEDs with a GaP window layer show a stronger electroluminescence intensity, a higher light output power, a higher external quantum efficiency and a slower degradation of light output with increasing bias current. These results indicate that the GaP material is more adequate to be used as a window layer for the AlGaInP optical devices.  相似文献   

6.
《Journal of Crystal Growth》2007,298(2):153-157
Transmission electron microscopy has been used to characterize the microstructure of HgTe/CdTe superlattices (SLs) grown by molecular beam epitaxy on CdZnTe(2 1 1) B substrates. The purpose of these intermediate layers was to improve the quality of subsequent HgCdTe (MCT) epilayers intended for infrared detectors. The observations confirmed that the SLs smoothed out the surface roughness of the substrate, and showed that threading dislocations were prevented from reaching the MCT epilayers. High-quality growth of MCT on CdZnTe using the HgTe/CdTe interfacial layers has been demonstrated.  相似文献   

7.
The influence of AlN nucleation layer (NL) growth conditions on the quality of GaN layer deposited on (0 0 0 1) sapphire by organometallic chemical vapor phase epitaxy (OMVPE) has been investigated by X-ray diffraction, atomic force microscopy and transmission electron microscopy. Growth pressure, temperature and time were varied in this study. Results indicate that there exists an optimal thickness of the NL is required for optimal growth. Both thin and thick NLs are not conducive to the growth of high-quality GaN layers. Arguments have been developed to rationalize these observations.  相似文献   

8.
The influence of thermal annealing on the crystalline silicon surface passivating properties of selected amorphous silicon containing layer stacks (including intrinsic and doped films), as well as the correlation with silicon heterojunction solar cell performance has been investigated. All samples have been isochronally annealed for 1 h in an N2 ambient at temperatures between 150 °C and 300 °C in incremental steps of 15 °C. For intrinsic films and intrinsic/n-type stacks, an improvement in passivation quality is observed up to 255 °C and 270 °C, respectively, and a deterioration at higher temperatures. For intrinsic/n-type a-Si:H layer stacks, a maximum minority carrier lifetime of 13.3 ms at an injection level of 1015 cm? 3 has been measured. In contrast, for intrinsic/p-type a-Si:H layer stacks, a deterioration in passivation is observed upon annealing over the whole temperature range. Comparing the lifetime values and trends for the different layer stacks to the performance of the corresponding cells, it is inferred that the intrinsic/p-layer stack is limiting device performance. Furthermore, thermal annealing of p-type layers should be avoided entirely. We therefore propose an adapted processing sequence, leading to a substantial improvement in efficiency to 16.7%, well above the efficiency of 15.8% obtained with the ‘standard’ processing sequence.  相似文献   

9.
The hydride vapor phase epitaxy (HVPE) of {0 0 0 1} AlN films on {1 1 1} Si substrates covered with epitaxial {1 1 1} cubic SiC (3C-SiC intermediate layers) was carried out. 3C-SiC intermediate layers are essential to obtain high-quality AlN films on Si substrates, because specular AlN films are obtained with 3C-SiC intermediate layers, whereas rough AlN films are obtained without 3C-SiC intermediate layers. We determined the polarities of AlN films and the underlying 3C-SiC intermediate layers by convergent beam electron diffraction (CBED) using transmission electron microscopy. For the first time, the polarities of the AlN films and the 3C-SiC intermediate layers were determined as Al and Si polarities, respectively. The AlN films were hardly etched by aqueous KOH solution, thereby indicating Al polarity. This supports the results obtained by CBED. The result is also consistent with electrostatic arguments. An interfacial structure was proposed. The 3C-SiC intermediate layers are promising for the HVPE of AlN films on Si substrates.  相似文献   

10.
We report the structural and electrical properties of InAsSb epilayers grown on GaAs (0 0 1) substrates with mid-alloy composition of 0.5. InSb buffer layer and InAsxSb1−x step-graded (SG) buffer layer have been used to relax lattice mismatch between the epilayer and substrate. A decrease in the full-width at half-maximum (FWHM) of the epilayer is observed with increasing the thickness of the InSb buffer layer. The surface morphology of the epilayer is found to change from 3D island growth to 2D growth and the electron mobility of the sample is increased from 5.2×103 to 1.1×104 cm2/V s by increasing the thickness of the SG layers. These results suggest that high crystalline quality and electron mobility of the InAs0.5Sb0.5 alloy can be achieved by the growth of thick SG InAsSb buffer layer accompanied with a thick InSb buffer layer. We have confirmed the improvement in the structural and electrical properties of the InAs0.5Sb0.5 epilayer by quantitative analysis of the epilayer having a 2.09 μm thick InSb buffer layer and 0.6 μm thickness of each SG layers.  相似文献   

11.
Control of band offsets on hetero-junctions is important to achieve a higher efficiency amorphous silicon-based solar cell. It is expected to improve cell's properties of Voc and FF by suppressing band offsets on the junction. The configuration of conduction band level (Ec), valence band level (Ev) and Fermi level (Ef) based on vacuum level governs the formation of band offset on the junction. We show that the configuration of the band structure on the surface of amorphous Si thin film is deposited by plasma-CVD equipment with a VHF power supply. Ec and Ev were obtained from ionization energy and energy band gap observed by ultraviolet photoemission spectroscopy and optical measurement, respectively. Ef was measured as work function by means of Kelvin probe method. As a result, it is found that shifts of energy levels originate from change of bonding characteristics in the amorphous Si network. This phenomenon is peculiar to amorphous Si-based materials. The results indicate that the upper shift of Ec and Ev are effective in suppressing band offsets on the hetero-junction. We show the performance of solar cells with controlled band offsets on hetero-junctions and discuss the possibility of higher Voc and FF by employing amorphous Si-based materials.  相似文献   

12.
Indium nitride (InN) layers were grown on (1 1 1) silicon substrates by reactive magnetron sputtering using an indium target. Atomic force microscope, X-ray diffraction, and Raman spectroscopy analysis revealed that highly c-axis preferred wurtzite InN layers with very smooth surface can be obtained on (1 1 1) silicon substrates at a substrate temperature as low as 100 °C. The results indicate that the reactive sputtering is a promising growth technique for obtaining InN layers on silicon substrates at low substrate temperature with low cost and good compatibility with microelectronic silicon-based devices.  相似文献   

13.
14.
Strained layer CdS/ZnS superlattices have been grown on GaAs(0 0 1) by molecular-beam epitaxy using CdS and ZnS compound sources. The samples were investigated with special reference to their structural properties and lattice dynamics by means of X-ray diffraction and Raman spectroscopy. The results of four superlattices with different period length are discussed in detail. X-ray diffraction profiles show superlattice satellite peaks up to the fourth order indicating a high degree of periodicity. The lateral and in-depth homogeneity of the period length is also confirmed by Raman investigations. Folded longitudinal acoustic phonons in CdS/ZnS superlattices were observed for the first time. The experimental values agree very well with theoretical calculations based on the Rytov model and show the expected dependency on the superlattice period. The behaviour of the optical phonons is mainly determined by strain induced shifts caused by the high lattice mismatch (−7%) for this system. A good agreement between theoretical predictions and detected frequencies is obtained.  相似文献   

15.
16.
17.
GaSb/AlGaSb multi-quantum well (MQW) structures with an AlSb initiation layer and a relatively thick GaSb buffer layer grown on Si (0 0 1) substrates were prepared by molecular beam epitaxy (MBE). Transmission electron microscopy (TEM) images and high-resolution X-ray diffraction (XRD) patterns indicated definite MQW structures. The photoluminescence (PL) emission around 1.55 μm wavelength was observed for 10.34 nm GaSb/30 nm Al0.6Ga0.4Sb MQW structure at room temperature. Dependence of PL emission energy on GaSb well width was well explained by finite square well potential model.  相似文献   

18.
We have prepared (1 1 1)-oriented Si layers on SiO2 (fused silica) substrates from amorphous-Si(a-Si)/Al or Al/a-Si stacked layers using an aluminum-induced crystallization (AIC) method. The X-ray diffraction (XRD) intensity from the (1 1 1) planes of Si was found to depend significantly on growth conditions such as the thicknesses of Si and Al, deposition order (a-Si/Al or Al/a-Si on SiO2), deposition technique (sputtering or vacuum evaporation) and exposure time of the Al layer to air before the deposition of Si. The crystal orientation of the Si layers was confirmed by θ−2θ, 2θ XRD and electron backscatter diffraction (EBSD). The photoresponse properties of semiconducting BaSi2 films formed on the (1 1 1)-oriented Si layers by the AIC method were measured at room temperature. Photocurrents were clearly observed for photon energies greater than 1.25 eV. The external quantum efficiencies of the BaSi2 were also evaluated.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号