首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fluid Phase Equilibria》1996,118(2):201-219
A new cubic equation of state (EOS) was developed in this study for vapor-liquid equilibrium (VLE) calculations of nonpolar fluids. The repulsive term of this EOS reexpressed the results of Walsh and Gubbins (1990) from their modified thermodynamic perturbation theory of polymerization into a simple form in which a non-spherical parameter was employed to account for the different shapes of molecules. The repulsive compressibility factors calculated from this EOS agree well with the molecular simulation data for various kinds of hard bodies ranging from a single hard sphere to tangent or fused long chain molecules. A simple attractive term was then coupled with the repulsive to complete the EOS in a cubic form. Equation parameters were determined for a diversity of nonpolar real fluids. These parameters were expressed in generalized forms for engineering computations. Satisfactory results from this EOS on the saturated properties of pure nonpolar fluids were obtained. This EOS was also extended to calculate the VLE of nonpolar fluid mixtures. The results are again satisfactory over wide ranges of temperature and pressure.  相似文献   

2.
In this research, we use the original Peng-Robinson (PR) equation of state (EOS) for pure fluids and develop a crossover cubic equation of state which incorporates the scaling laws asymptotically close to the critical point and it is transformed into the original cubic equation of state far away from the critical point. The modified EOS is transformed to ideal gas EOS in the limit of zero density. A new formulation for the crossover function is introduced in this work. The new crossover function ensures more accurate change from the singular behavior of fluids inside the regular classical behavior outside the critical region. The crossover PR (CPR) EOS is applied to describe thermodynamic properties of pure fluids (normal alkanes from methane to n-hexane, carbon dioxide, hydrogen sulfide and R125). It is shown that over wide ranges of state, the CPR EOS yields the thermodynamic properties of fluids with much more accuracy than the original PR EOS. The CPR EOS is then used for mixtures by introducing mixing rules for the pure component parameters. Higher accuracy is observed in comparison with the classical PR EOS in the mixture critical region.  相似文献   

3.
《Fluid Phase Equilibria》1998,145(2):193-215
A volume-translated Peng-Robinson (VTPR) equation of state (EOS) is developed in this study. Besides the two parameters in the original Peng-Robinson equation of state, a volume correction term is employed in the VTPR EOS. In this equation, the temperature dependence of the EOS energy parameter was regressed by an improved expression which yields better correlation of pure-fluid vapor pressures. The volume correction parameter is also correlated as a function of the reduced temperature. The VTPR EOS includes two optimally fitted parameters for each pure fluid. These parameters are reported for over 100 nonpolar and polar components. The VTPR EOS shows satisfactory results in calculating the vapor pressures and both the saturated vapor and liquid molar volumes. In comparison with other commonly used cubic EOS, the VTPR EOS presents better results, especially for the saturated liquid molar volumes of polar systems. VLE calculations on fluid mixtures were also studied in this work. Traditional van der Waals one-fluid mixing rules and other mixing models using excess free energy equations were employed in the new EOS. The VTPR EOS is comparable to other EOS in VLE calculations with various mixing rules, but yields better predictions on the molar volumes of liquid mixtures.  相似文献   

4.
《Fluid Phase Equilibria》1999,161(2):257-264
A unified group contribution (GC) lattice equation of state (EOS) was formulated based on the multifluid approximation of the nonrandom lattice fluid theory. The GC-EOS requires segment size and interaction energy parameter from functional group characteristics. The unique feature of the approach is that a single set of group parameters are used for both pure fluids and mixtures. The approach was found to be quantitatively applicable for predicting thermodynamic properties of real pure fluids and mixtures. Its potential utility was demonstrated for vapor pressures, vapor–liquid coexistence densities of pure fluids and phase equilibrium properties of mixtures including polymeric solutions.  相似文献   

5.
An equation of state (EOS) for square-well chain molecules with variable range developed on the basis of statistical mechanics for chemical association in our previous work is employed for the calculations of pVT properties and vapor–liquid equilibria (VLE) of pure non-associating fluids. The molecular parameters for 73 normal substances and 46 polymers are obtained from saturated vapor pressure and liquid molar volume data for normal fluids or pVT data for polymers. Linear relations are found for the molecular parameters of normal fluids with their molecular weight of homologous compounds. This indicates that the model parameters of homologous series, subsequently pVT and VLE, can be predicted when experimental data are not available. The predicted saturated vapor pressures and/or liquid volumes are satisfactory through the generalized model parameters. The calculated VLE and pVT for normal fluids and polymers by this EOS are compared with those from other engineering models, respectively.  相似文献   

6.
Recently, a new statistical mechanic-based equation of state has been proposed by Mohsen-Nia and Modarress [M. Mohsen-Nia, H. Modarress, Chem. Phys. 336 (2007) 22–26] for associating pure fluids. The new association equation of state (AEOS) was successfully applied to calculate the saturated properties of water, methanol, and ammonia. In this work, the new proposed AEOS is used to evaluate the (vapour + liquid) equilibrium (VLE) of 25 associating pure compounds and the adjusted parameters are reported. The new AEOS is also extended to mixtures containing associating and non-associating compounds. The calculated saturated properties of the pure compounds are compared with those calculated by other AEOSs. The results of VLE calculation for various binary mixtures such as: alcohol/hydrocarbon, alcohol/CO2, alcohol/aromatic-hydrocarbons, and the quaternary system (H2O/CH4/CO2/H2S) indicate the capability of the new proposed AEOS for associating pure and mixture calculations.  相似文献   

7.
An equation of state (EOS) developed in our previous work for square-well chain molecules with variable range is further extended to the mixtures of non-associating fluids. The volumetric properties of binary mixtures for small molecules as well as polymer blends can well be predicted without using adjustable parameter. With one temperature-independent binary interaction parameter, satisfactory correlations for experimental vapor–liquid equilibria (VLE) data of binary normal fluid mixtures at low and elevated pressures are obtained. In addition, VLE of n-alkane mixtures and nitrogen + n-alkane mixtures at high pressures are well predicted using this EOS. The phase behavior calculations on polymer mixture solutions are also investigated using one-fluid mixing rule. The equilibrium pressure and solubility of gas in polymer are evaluated with a single adjustable parameter and good results are obtained. The calculated results for gas + polymer systems are compared with those from other equations of state.  相似文献   

8.
Helium shows the nearest behaviour to ideal gas in the room conditions. In contrast, thermodynamic behaviour of helium in the critical region, in which its liquefaction is possible, is extremely complicated. The equation of state (EOS), which is in common use for helium, is the modified Benedict–Webb–Rubin (MBWR) EOS developed by McCarty and Arp which is a 13th-order equation with 32 substance-dependent parameters. MBWR is a complicated EOS and its use is time consuming. In this work, the modified Peng–Robinson EOS introduced by Feyzi et al. is customised with 10 adjustable parameters for helium in the temperature range of 2.20–15.20 K and pressures up to 16 bar. The proposed EOS is able to predict the properties of helium in the vapour–liquid equilibrium (VLE) conditions and in the single gas-phase region. In addition, a temperature-dependent correlation for constant pressure heat capacity of helium from very low up to normal temperatures is proposed. The liquefaction process of helium, which is being done by cooling it to very low temperatures by passing through a Joule–Thomson valve, is predicted by the proposed EOS. Very accurate results are observed.  相似文献   

9.
《Fluid Phase Equilibria》2005,233(2):194-203
This work presents an empirical correction to improve the Peng–Robinson equation of state (PR EOS) for representing the densities of pure liquids and liquid mixtures in the saturated region using the volume translation method. A temperature-dependent volume correction is employed to improve the original PR EOS so that it can match the true critical point of pure fluids. The volume correction is generalized as a function of the critical parameters and the reduced temperature. The volume translation PR (VTPR) EOS with the generalized volume correction accurately represents the saturated liquid densities for different polar and non-polar fluids, including alkanes, cycloparaffins, halogenated hydrocarbons, olefins, cyclic olefins, aromatics and inorganic molecules. The average relative deviations for 91 pure compounds was 1.37%. The generalized VTPR EOS was also used to predict the saturated liquid density of 53 binary mixtures with a relative deviation of 0.98%. The generalized VTPR EOS can also be extended to other materials. The accuracy of the generalized VTPR EOS compares well with other methods and equations of state.  相似文献   

10.
A new quintic equation of state (EOS) for pure substances and mixtures is proposed. The equation is based on critical parameters and one saturation point. The proposed Q5EOS is a generalisation of many cubic equations of state. Equation Q5 has five parameters, four of which are temperature-independent. The temperature-dependent parameter a is expressed by a relation based on a simple power function. Parameters defining this function can be calculated from saturation data, Boyle temperature and supercritical data.  相似文献   

11.
《Fluid Phase Equilibria》2005,233(1):110-121
A new equation of state based on the Statistical Associating Fluid Theory (SAFT) is presented to study the phase behavior of associating and non-associating fluids. In the new equation of state, the hard sphere contribution to compressibility factor of the simplified version of the SAFT (SSAFT) is replaced with that proposed by Ghotbi and Vera. The Ghotbi–Vera SSAFT (GV-SSAFT) was also extended to study the phase behavior of associating and non-associating mixtures. The GV-SSAFT like the SSAFT equation of state has three adjustable segment parameters for non-associating fluids and five parameters for associating fluids. The experimental data of liquid densities and vapor pressures for pure fluids studied in this work were used to obtain the best values for the parameters of the GV-SSAFT. The results obtained from the GV-SSAFT for liquid densities and vapor pressures of pure associating and non-associating fluids were compared with those obtained from the SSAFT equation of state. The results showed that the GV-SSAFT similar to the SSAFT can accurately correlate the experimental data of liquid density and vapor pressure for systems studied. On the other hand the results obtained from two SAFT-based equations of state are almost identical. In order to show capability of the GV-SSAFT and SSAFT equations of state, they were used to directly calculate heat of vaporization for a number of pure associating and non-associating fluids. Slightly better results for heat of vaporization comparing to the experimental data were obtained from the GV-SSAFT EOS than those obtained from the SSAFT. The GV-SSAFT was also used to study the VLE phase behavior for a number of binary associating and non-associating mixtures. The results also showed that the GV-SSAFT can be successfully used to study the phase behavior of mixtures studied in this work.  相似文献   

12.
《Fluid Phase Equilibria》2006,239(1):83-90
A new three-parameter cubic equation of state is developed with special attention to the application for reservoir fluids. One parameter is taken temperature dependent and others are held constant. The EOS parameters were evaluated by minimizing saturated liquid density deviation from experimental values and satisfying the equilibrium condition of equality of fugacities simultaneously. Then, these parameters were fitted against reduced temperature and Pitzer acentric factor. For calculating the thermodynamic properties of a pure component, this equation of state requires the critical temperature, the critical pressure, the acentric factor and the experimental critical compressibility of the substance. Using this equation of state, saturated liquid density, saturated vapor density and vapor pressure of pure components, especially near the critical point, are calculated accurately. The average absolute deviations of the predicted saturated liquid density, saturated vapor density and vapor pressure of pure components are 1.4%, 1.19% and 2.11%, respectively. Some thermodynamic properties of substances have also been predicted in this work.  相似文献   

13.
Thermodynamic analysis of binary mixtures near the critical region is essential for many chemical process designs. In this research, based on isomorphism principle and incorporating general crossover approach the original Soave–Redlich–Kwong (SRK) equation of state (EOS) was developed for the binary mixtures. We have introduced an additional term in the crossover function in order to take into account the difference between the classical critical parameters and the real critical parameters. The applicability of this crossover EOS was verified against methane–ethane mixture to describe their thermodynamic properties over a wide range of thermodynamic states, because of their wide applications. It is shown that based on this approach we can received too much more accuracy for predicting thermodynamic properties in comparison with classical form of SRK EOS.  相似文献   

14.
A crossover statistical associating fluid theory (SAFT) equation of state (EOS) is used to fit the parameters of eight common pure supercritical fluids (water, ammonia, carbon dioxide, R134a, ethane, propane, ethene and propene) and calculate their thermodynamic properties. Over a wide range including the critical region, the EOS reproduces the saturated pressure data with an average absolute deviation (AAD) of about 1% and the saturated densities with an AAD of about 2%. In the one-phase region, the EOS represents the experimental values of pressure with an AAD of about 1–3%. The results are satisfactory.  相似文献   

15.
This work proposes a new equation of state (EOS) based on molecular theory for the prediction of thermodynamic properties of real fluids. The new EOS uses a novel repulsive term, which gives the correct hard sphere close packed limit and yields accurate values for hard sphere and hard chain virial coefficients. The pressure obtained from this repulsive term is corrected by a combination of van der Waals and Dieterici potentials. No empirical temperature functionality of the parameters has been introduced at this stage. The novel EOS predicts the experimental volumetric data of different compounds and their mixtures better than the successful EOS of Peng and Robinson. The prediction of vapor pressures is only slightly less accurate than the results obtained with the Peng-Robinson equation that is designed for these purposes. The theoretically based parameters of the new EOS make its predictions more reliable than those obtained from purely empirical forms.  相似文献   

16.
In previous work, we developed the crossover lattice equation of state (xLF EOS) for pure fluids and the xLF EOS yielded the saturated vapour pressure and the density values with a much better accuracy than the classical LF EOS over a wide range. In this work, we extended xLF EOS to fluid mixtures. Classical composition-dependent mixing rules with only adjustable two binary interaction parameters same as the LF EOS are used. A comparison is made upon experimental data for fluids mixtures in the one- and two-phase regions. The xLF EOS shows more improved representations than the LF EOS, especially in the critical region.  相似文献   

17.
运用Tang等提出的Lennard-Jones (L-J)流体两参数的一阶平均球形近似(FMSA)状态方程, 计算了流体的汽液共存相图和饱和蒸汽压曲线, 以及非饱和区的PVT性质, 并与文献数据进行比较. L-J参数由Tr<0.95的汽液相共存数据回归得到. 计算结果表明, 对于分子较接近球形的流体, 除临界点附近外, 该方程可以在较大的温度和压力范围内计算真实流体的PVT性质, 结果满意. 对于球形分子, 该方程的精确度随分子尺寸的变大基本保持稳定. 该方程不适用于强极性物质. 在高密度区, 该方程的计算结果明显优于P-R方程. 对于分子偏离球形较远的流体, 该方程的适用性变差, 此时要考虑分子形状的影响, 可采用三参数的FMSA状态方程进行计算.  相似文献   

18.
We apply the crossover lattice equation of state (xLF EOS) [M.S. Shin, Y. Lee, H. Kim, J. Chem. Thermodyn. 40 (2007) 174–179] to the calculations of thermodynamic 2nd-order derivative properties (isochoric heat capacity, isobaric heat capacity, isothermal compressibility, thermal expansion coefficient, Joule–Thompson coefficient, and sound speed). This equation of state is used to calculate the same properties of pure systems (carbon dioxide, normal alkanes from methane to propane). We show that, over a wide range of states, the equation of state yields properties with better accuracy than the lattice equation of state (LF EOS), and near the critical region, represents singular behavior well.  相似文献   

19.
A thermodynamic consistency of isothermal vapor–liquid equilibrium data for 9 non-polar and 8 polar binary asymmetric mixtures at high pressures has been evaluated. A method based on the isothermal Gibbs–Duhem equation was used for the test of thermodynamic consistency using a Φ–Φ approach. The Peng–Robinson equation of state coupled with the Wong–Sandler mixing rules were used for modeling the vapor–liquid equilibrium (VLE) within the thermodynamic consistency test. The VLE parameters calculations for asymmetric mixtures at high pressures were highly dependent on bubble pressure calculation, making more convenient to eliminate the data points yielding the highest deviations in pressure. However the results of the thermodynamic consistencies test of experimental data for many cases were found not fully consistent. As a result, the strategies for solving these problems were discussed in detailed.  相似文献   

20.
The vapour–liquid equilibrium (VLE) properties of polar and non-polar fluids have been modelled by the use of two modified van der Waals (vdW)-type equations of state (EOSs). In this article, a revised method is applied to the above-mentioned EOSs to improve the representation of VLE properties of different class of fluids. In this respect, the repulsion parameter b is considered to be temperature dependent and also a temperature-dependent revision factor α(T) is introduced to the liquid fugacity coefficient expression derived from traditional isothermal integration to reproduce the vapour pressure (Ps) of pure liquids. The present method is also extended to represent the VLE properties of binary mixtures containing noble gases, refrigerants and hydrocarbons. This method outperforms the original vdW-type EOSs in predicting the VLE and pressure-volume-temperature (PVT) properties of 22 pure substances and 7 binary mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号