首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of Fe-dopant concentration on the structure, optical, and magnetic properties of ZnO thin films were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), optical transmittance, absorption, photoluminescence (PL), and magnetic measurements. XRD spectra indicated that the doping of Fe atoms could not only change the lattice constant of ZnO but also improve the crystalline quality of ZnO thin films. And the Zn (0 0 2) diffraction peak at round 36.34°(2θ) was detected with increasing Fe content for the substitution of the Zn in the ZnO film. The band gap edge shifted toward longer wavelength with increase in Fe doping. Moreover, near band edge emission gradually increased with increase in Fe content (up to about 0.82 wt%), and then abruptly decreased due to the concentration quenching effect. Magnetic measurements confirmed that the ferromagnetic behavior of Fe-doped ZnO was correlated with the dopant concentration.  相似文献   

2.
《Journal of Non》2006,352(23-25):2343-2346
Zinc oxide thin films were deposited on silicon and corning-7059 glass substrates by plasma enhanced chemical vapor deposition at different substrate temperatures ranging from 36 to 400 °C and with different gas flow rates. Diethylzinc as the source precursor, H2O as oxidizer and argon as carrier gas were used for the preparation of ZnO films. Structural and optical properties of these films were investigated using X-ray diffraction, reflection high energy electron diffraction, atomic force microscopy and photoluminescence. Highly oriented films with (0 0 2) preferred planes were obtained on silicon kept at 300 °C with 50 ml/min flow rate of diethylzinc without any post annealing. Reflection high energy electron diffraction pattern also showed the crystalline nature of these films. A textured surface with rms roughness ∼28 nm was observed by atomic force microscopy for the films deposited at 300 °C. A sharp peak at 380 nm in the PL spectra indicated the UV band-edge emission.  相似文献   

3.
《Journal of Non》2006,352(9-20):1148-1151
We have produced and studied erbium doped nanocrystalline silicon thin films with different oxygen and hydrogen content in order to evaluate the influence of the matrix on the Er3+ emission and on the 0.89 eV and 1.17 eV bands. Films were grown by reactive magnetron sputtering on glass substrates under several different conditions (RF power, Er content and gas mixture composition) in order to obtain different microstructures. The structural parameters and the chemical composition of the samples were obtained by X-ray in the grazing incidence geometry, Raman spectroscopy and Rutherford back scattering analysis. Using X-ray technique combined with Raman spectroscopy information on the crystalline fraction and the average crystallite size of Si nanocrystals was obtained. Dependence of the 0.89 eV and 1.17 eV peaks in Si heterogeneous matrixes on the films crystallinity and O/H ratio has been analyzed.  相似文献   

4.
High-quality ZnO films were grown on Si(1 0 0) substrates with low-temperature (LT) ZnO buffer layers by an electron cyclotron resonance (ECR)-assisted molecular-beam epitaxy (MBE). In order to investigate the optimized buffer layer temperature, ZnO buffer layers of about 1.1 μm were grown at different growth temperatures of 350, 450 and 550 °C, followed by identical high-temperature (HT) ZnO films with the thickness of 0.7 μm at 550 °C. A ZnO buffer layer with a growth temperature of 450 °C (450 °C-buffer sample) was found to greatly enhance the crystalline quality of the top ZnO film compared to others. The root mean square (RMS) roughness (3.3 nm) of its surface is the smallest, compared to the 350 °C-buffer sample (6.7 nm), the 550 °C-buffer sample (7.4 nm), and the sample without a buffer layer (6.8 nm). X-ray diffraction (XRD), photoluminescence (PL) and Raman scattering measurements were carried out on these samples at room temperature (RT) in order to characterize the crystalline quality of ZnO films. The preferential c-axis orientations of (0 0 2) ZnO were observed in the XRD spectra. The full-width at half-maximum (FWHM) value of the 450 °C-buffer sample was the narrowest as 0.209°, which indicated that the ZnO film with a buffer layer grown at this temperature was better for the subsequent ZnO growth at elevated temperature of 550 °C. Consistent with these results, the 450 °C-buffer sample exhibits the highest intensity and the smallest FWHM (130 meV) of the ultraviolet (UV) emission at 375 nm in the PL spectrum. The ZnO characteristic peak at 438.6 cm−1 was found in Raman scattering spectra for all films with buffers, which is corresponding to the E2 mode.  相似文献   

5.
《Journal of Non》2006,352(23-25):2484-2487
This paper presents the comparative investigation of photoluminescence (PL) and its temperature dependence for rf-magnetron co-sputtered Si-enriched SiOx systems and amorphous Si films prepared by hot-wire CVD method with Si nanocrystallites of different sizes. It is shown that PL spectra of Si–SiOx films consist of the five PL bands peaked at 1.30, 1.50, 1.76, 2.05 and 2.32 eV. Amorphous Si films with Si nanocrystallites are characterized by three PL bands only peaked at 1.35, 1.50 and 1.76 eV. The peak position of the 1.50 eV PL band shifts with the change of Si quantum dot sizes and it is attributed to exciton recombination inside of Si quantum dots. The nature of four other PL bands is discussed as well.  相似文献   

6.
《Journal of Crystal Growth》2003,247(3-4):497-504
Structural, morphological, optical and electrical properties of ZnO thin films prepared by chemical spray pyrolysis from zinc acetate (Zn(CH3COO)2 2H2O) aqueous solutions, on polished Si(1 0 0), and fused silica substrates for optical characterization, have been studied in terms of deposition time and substrate temperature. The growth of the films present three regimes depending on the substrate temperature, with increasing, constant and decreasing growth rates at lower, middle, and higher-temperature ranges, respectively. Growth rate higher than 15 nm min−1 can be achieved at Ts=543 K. ZnO film morphological and electrical properties have been related to these growth regimes. The films have been characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy.  相似文献   

7.
《Journal of Non》2006,352(21-22):2109-2113
As a new development of our previous study on the production of light-emitting amorphous Si (a-Si) films by the neutral cluster deposition (NCD) method, we have fabricated light-emitting Si films with improved emission intensity by the combined methods of NCD and subsequent high-temperature annealing. The structure of these films is best characterized by Si nanocrystals, surrounded by an interfacial a-SiOx (x < 2) layer, embedded in an a-SiO2 film. These improved Si films were observed by atomic force microscopy and high-resolution transmission electron microscopy, and analyzed by means of X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescence (PL) and Fourier transform infrared-attenuated total reflection measurements. The PL curves of the annealed samples exhibit peaks around 600 nm, at almost the same position as the unannealed samples. Their PL intensities, however, have increased to approximately five times those of the unannealed samples. The source of the luminescence is most likely due to electron-hole recombination in the a-SiO2/Si interfacial a-SiOx layer.  相似文献   

8.
《Journal of Non》2007,353(13-15):1418-1421
The photoluminescence (PL) of a series of (GeS2)80(Ga2S3)20 glasses doped with different amounts of Er (0.17, 0.35, 0.52, 1.05 and 1.39 at.%) at 77 and 4.2 K has been studied. The influence of the temperature on the emission cross-section of the PL bands at ∼1540, 980 and 820 nm under host excitation has been defined. A quenching effect of the host photoluminescence has been established from the compositional dependence of the PL intensity. It has been found that the present Er3+-doped Ge–S–Ga glasses posses PL lifetime values about 3.25 ms.  相似文献   

9.
《Journal of Non》2006,352(32-35):3734-3738
Porous diamond-like-carbon (PDLC) thin films obtained on silicon substrate by DC low energy magnetron sputtering have been investigated by photoluminescence, transmission and reflection spectroscopy, photoacoustic and spectroscopic ellipsometry. The absorption features observed for these films show similarities with those of porous silicon (PS) as well as in the performed gradient structural pattern classification of the SFM porosity, by means of the computational GPA-flyby environment on PS and PDLC samples. The dielectric function is also calculated for the bulk diamond-like carbon using the full-potential linearized augmented plane wave method within the framework of local density approximation to density functional theory. From the measurement a low real dielectric constant of about 4.5 at 0.8 eV was found whereas the calculated e1(0) for the bulk diamond has a value of 5.5.  相似文献   

10.
《Journal of Non》2006,352(9-20):1152-1155
This paper presents the results of photoluminescence, its temperature dependence and Raman scattering investigations on magnetron co-sputtered silicon oxide films with (or without) embedded Si (or Ge) nanocrystallites. It is shown the oxide related defect origin of the visible PL centers peaked at 1.7, 2.06 and 2.30 eV. The infrared PL band centered at 1.44–1.58 eV in Si–SiOx, system has been analyzed within a quantum confinement PL model. Comparative PL investigation of Ge–SiOx system has confirmed that high energy visible PL bands (1.60–1.70 and 2.30 eV) are connected with oxide related defects in SiOx. The PL band in the spectral range of 0.75–0.85 eV in Ge–SiOx system is attributed to exciton recombination inside of Ge NCs.  相似文献   

11.
《Journal of Non》2006,352(40-41):4183-4189
Luminescent materials consisting of Eu(III) and/or Tb(III) ions and quantum dots of the ZnO semiconductor were immobilized in oxide xerogels by the impregnation method. The material’s excitation spectra showed the characteristic absorption bands of lanthanide(III) ions and sharp bands at low wavelengths attributed to excitons in the semiconductor nanoparticles. The luminescence emission of Ln(III) ions (Ln = Tb and/or Eu) showed very low intensity when typical excitation wavelengths for both ions were used (λexc = 394 for Eu(III), 350 nm for Tb(III)). In three-component materials (ZnO quantum dots and Ln(III) ions in oxide xerogels) only the Tb(III) emission could be improved by using an excitation wavelength corresponding to the position of one of the exciton absorption bands. The energy transfer enhancing the Eu(III) emission was possible in the four-component system (ZnO quantum dots plus Tb(III) and Eu(III) incorporated into the oxide matrix). The best results of the Eu(III) emission intensity were obtained when the silica xerogel served as the matrix of the four-component material thermally treated at 80 °C.  相似文献   

12.
A series of amorphous carbon-based films were deposited on the nanostructured Ag layers to observe surface plasmon (SP) enhanced photoluminescence (PL). The dependence of PL peak wavelength and intensity on the film composition and the nanostructure of the Ag layers were systematically investigated. The PL wavelength was tuned from 442 nm to 635 nm by varying the carbon content of the as-deposited carbon-based films. The nanostructure of Ag layers varied from nanoparticles (NPs) to continuous films via process control. With the SPs generated at the carbon-based film/Ag layer interface, the PL intensity was found to be significantly enhanced with a peak enhancement factor of 6, and the light emission range of the composite films was extended to 434–653 nm. The dependence of PL intensity on the spectral overlap between the carbon-based films and plasmon resonant Ag layers, Ag surface morphology and the internal quantum efficiency (IQE) of the carbon-based films was discussed. The redshift of SP resonance with the increasing refractive index of the upper carbon-based films was observed.  相似文献   

13.
Photoluminescence of undoped and B-doped ZnO in silicate glasses was investigated by varying the concentration of ZnO (35–50 mol%) and B dopant (0–10 mol%) in the glass matrices. The broad and intense near band edge emissions were observed while the visible light emission was very weak. UV luminescence in all samples was red-shifted relative to the exciton transition in bulk ZnO and enhanced by decreased ZnO concentration due to higher degree of structural integrity and the lower aggregation degree of ZnO. Donor B dopant played the double roles of filling conduction bands to broaden band gap when its concentration was lower than 5 mol%, and emerging with conduction bands to narrow the gap when B dopant exceeded this value.  相似文献   

14.
《Journal of Non》2006,352(38-39):4088-4092
In this paper, amorphous ZnO thin films were obtained by direct UV irradiation of β-diketonate Zn(II) precursor complexes spin-coated on Si(1 0 0) and fused silica substrates. ZnO films were characterized by means of XPS, X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). These analyses revealed that as-deposited films are amorphous and have a rougher surface than thermally treated films. Optical characterization of the films showed that these are highly transparent in the visible spectrum with an average transmittance of up to 95% over 400 nm, and an optical band-gap energy of 3.21 eV for an as-deposited film, and 3.27 eV for a film annealed at 800 °C. Low resistivity values were obtained for the ZnO films (1.0 × 10−2 Ω cm) as determined by Van der Pauw four-point probe method.  相似文献   

15.
We report the preparation of multilayers based on polyamide–imide polymer and As–Se or Ge–Se chalcogenide thin films. Chalcogenide films of As–Se and Ge–Se systems were deposited using a thermal evaporation method periodically alternating with spin-coated Polyamide–imide films. Fifteen layers of PAI + As–Se system and nineteen layers of PAI + Ge–Se system were coated. Optical properties of prepared multilayers have been established using UV–vis–NIR and Ellipsometric spectroscopy. Both, PAI + As–Se and PAI + Ge–Se multilayer systems, exhibited the high-reflection bands centered around 830 nm and 1350 nm, respectively. The shift of the band position of PAI + Ge–Se multilayers to lower energies was caused by higher thickness of Ge–Se films. The bandwidth of reflection band of 8 PAI + 7 As–Se multilayer was ~90 nm while bandwidth of PAI + Ge–Se system decreased to ~70 nm because Ge–Se films have 0.1 lower refractive index against As–Se films. Design of 1D-photonic crystals based on alternating chalcogenide and polymer films is a new opportunity for application of chalcogenide thin films as optical materials for near-infrared region.  相似文献   

16.
A series of hydrogenated amorphous silicon (a-Si:H) films were deposited in the transition region from amorphous to nanocrystalline phases by changing hydrogen dilution ratio R, deposition gas pressure, and RF power. Single junction a-Si:H solar cells were made using these materials as the intrinsic layers in the structure of n–i–p type on ZnO/Ag/stainless steel substrates. Light-induced degradations in the photovoltaic parameters were characterized on these cells after 1 Sun solar illumination for 150 h. The stabilized efficiencies were compared in conjunction with the structures in the intrinsic layers, which were revealed by high resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectrometry (FTIR). It was found that the solar cells incorporated protocrystalline intrinsic layer as the i-layer give a better initial efficiency, while solar cells made from nanostructured i-layers have a better stability of ~7% degradation against light soaking, as a result, both have nearly the same final stabilized efficiency. The best device stabilized efficiency reaches ~10.2% (0.25 cm2, AM1.5G) for the intrinsic layer deposited at a high pressure of 2 Torr.  相似文献   

17.
《Journal of Crystal Growth》2006,286(2):445-450
ZnO thin films were prepared by the electrochemical deposition method on conductive substrates. The as-deposited film was ZnO crystallites of the wurzite structure highly oriented along the (0 0 2) plane. The specific crystalline morphology may be attributed to the growth mechanism through the orientation attachment mode, which is one of the characteristics peculiar for the present process, because the terrace has been clearly observed in high-resolution AFM images. The film shows high transmittance and an optical band gap energy of 3.3 eV. After annealing in N2 or Ar, strong green emission was observed, which should be related to the generation of singly ionized oxygen defects. Improving emission intensity further by optimizing the annealing conditions, this method may be promising to replace the traditional method for preparation of ZnO green phosphor.  相似文献   

18.
By annealing fused silica coated with ultra-thin Ag film, silica nano-rings and nano-hollows were prepared on the substrate. The Ag nano-particles attached on the wall of nano-hollows or embedded in silica were confirmed with energy dispersive spectroscopy and transmission electron microscopy. Besides the well-known characteristic stretching bands of silica, three novel stretching bands around 1579, 1320 and 270 cm?1 were found in the annealed Ag-coated silica by Raman scattering spectroscopy, which have been attributed to the O2 in ground state, O–O and metal–oxygen stretching bands, respectively. The formation mechanism of nano-rings and nano-hollows has been discussed based on the experimental results. An ultraviolet photoluminescence emission of 360–370 nm from annealed Ag-coated silica was found when the excitations were 230 nm and 280 nm or longer. The possible photoluminescence emission mechanism has been discussed, which suggests that oxygen excess defects are responsible for the photoluminescence emission, and photoexcitation occurs in the silica as well as in Ag+ ions.  相似文献   

19.
Undoped ZnO films were deposited by radio frequency (RF) magnetron sputtering on amorphous buffer layers such as SiOx, SiOxNy, and SiNx prepared by plasma enhanced chemical vapor deposition (PECVD) for dielectric layer in thin film transistor (TFT) application. ZnO was also deposited directly on glass and quartz substrate for comparison. It was found that continuous films were formed in the thickness up to 10 nm on all buffer layers. The crystallinity of ZnO films was improved in the order on quartz>SiOx >SiOxNy>glass>SiNx according to the investigated intensities of (0 0 2) XRD peaks. The crystallite sizes of ZnO were in the order of SiOx~glass >SiNx. Stable XRD parameters of ZnO thin films were obtained to the thickness from 40 to 100 nm grown on SiOx insulator for TFT application. Investigation of the ZnO thin films by atomic force microscope (AFM) revealed that grain size and roughness obtained on SiNx were larger than those on SiOx and glass. Hence, both nucleation and crystallinity of sputtered ZnO thin films remarkably depended on amorphous buffer layers.  相似文献   

20.
《Journal of Non》2006,352(52-54):5463-5468
This work reports the effect of the presence of a Ni buffer layer on the photoluminescence (PL) of SiCxNy nanoparticle films prepared by RF plasma magnetron sputtering process in a reactive N2 + Ar + H2 gas mixture. An introduction of a Ni buffer of 80 nm or thicker remarkably improves the PL of the films. Annealing in a temperature range of 400–1100 °C is found to significantly affect the PL intensity. Optimal PL is achievable at 600 °C. X-ray photoelectron and Fourier-transform infrared spectroscopy suggest that the strong PL is directly related to the composition of the SiCxNy nanoparticle and the concentration of Si–O, and Si–N bonds. The results are relevant to the development of wide bandgap optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号