首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In searching for new kind of photoelectric material, chalcogenide glasses in the GeS2–Sb2S3–CdS system have been studied and their glass-forming region was determined. The system has a relatively large glass-forming region that is mainly situated along the GeS2–Sb2S3 binary side. Thermal, optical and mechanical properties of the glasses were reported and the effects of compositional change on their properties are discussed. These novel chalcogenide glasses have relatively high glass transition temperatures (Tg ranges from 566 to 583 K), good thermal stabilities (the maximum of deference between the onset crystallization temperature, Tc, and Tg is 105 K), broad transmission region (0.57–12 μm) and large densities (d ranges from 2.99 to 3.34 g cm?3). These glasses would be expected to be used in the field of rare earth doped fiber amplifiers and nonlinear optical devices.  相似文献   

2.
《Journal of Non》2006,352(32-35):3647-3652
The aim of this paper is to present a study of the thermal lens technique in quantifying the thermo optical coefficients: ds/dT (optical path change with temperature), thermal diffusivity and conductivity of PbO–Bi2O3–Ga2O3–BaO glasses doped with Yb3+. The thermal lens results indicate that the heat generation, as a function of the incident wavelength, resembles the absorption band 2F7/2  2F5/2 of Yb3+. Thermal diffusivity of 2 × 10−3 cm2/s and thermal conductivity of 4.5 × 10−3 W/K cm were obtained and are similar to other glasses already reported in previous literature. The results emphasize that the thermal lens technique can be a powerful tool to study the heat generation of new glassy systems.  相似文献   

3.
The calcium aluminosilicate glass (CAS) is an important class of optical materials due to the many applications envisaged, including its use as active media for glass lasers. In order to study how Nd2O3 doping affects the mechanical and the thermo-optical properties of CAS glass, two series of CAS glass, doped with Nd2O3 up to 5 wt%, were prepared in a vacuum atmosphere. The rare earth changes the physical properties, and this influence of doping ion content is discussed for both the series of samples in terms of mechanical, thermal, and thermo-optical properties. The study analyzed hardness and elastic moduli, glass transition temperature, crystallization temperature, thermal diffusivity, specific heat, density, thermal conductivity, refractive index, and thermo-optical properties, like temperature coefficient of the optical path length (dS/dT). The results presented provide information about the sample’s structure, and show that for Nd2O3 concentration up to 5 wt% there were no significant changes in the glass host material.  相似文献   

4.
Chalcogenide bulk glasses Ge20Se80?xTex for x  (0, 10) have been prepared by systematic replacement of Se by Te. Selected glasses have been doped with Er and Pr, and all systems have been characterized by transmission spectroscopy, measurements of dc electrical conductivity and low-temperature photoluminescence. Absorption coefficient has been derived from measured transmittance and estimated reflectance. Both absorption and low-temperature photoluminescence spectra reveal shifts of absorption edge and/or dominant luminescence band to longer wavelength due to Te  Se substitution. Arrhenius plots of dc electrical conductivity, in the temperature range 300–450 K, are characterized by activation energies roughly equal to the half of the optical gap. Arrhenius plots for temperatures below 300 K yield much lower activation energies. The dominant low-temperature luminescence band centered at about half the band gap energy starts to quench above 200 K and a new band appears at 900 nm. The band at 900 nm, due to band to band transitions, overwhelms the spectra at room temperature. Systems doped with Er exhibit a strong luminescence due to 4I13/2  I15/2 transition of Er3+ ion at 1539 nm, and Pr doped samples exhibit a relatively weak luminescence peak at 1590 nm, which we tentatively assign to 3F3  3H4 transition of Pr3+ ion.  相似文献   

5.
The scope of this work is to determine the crystalline phases of devitrified barium magnesium phosphate glasses and the glass composition which presents the best resistance to crystallization. Barium magnesium phosphate glasses with composition xMgO · (1 ? x)(60P2O5 · 40BaO) mol% (x = 0, 0.15, 0.3, 0.4, 0.5, and 0.6) were analyzed by differential thermal analysis (DTA) to evaluate the thermal stability against crystallization, and X-ray diffraction (XRD) to identify the crystalline phases formed after devitrification. The glass transition temperature (Tg) increases as the MgO content increases. The maximum temperature attributed to the crystallization peak in the DTA curve (Tc) increases when x increases in the range 0 ? x ? 0.3, and it decreases for x > 0.3. The most thermally stable glass composition against crystallization is for x = 0.3. After the devitrification, the number of coexisting crystalline phases increases as the MgO content increases. For x = 0.3 there is the coexistence of γBa(PO3)2 and Ba2MgP4O13 phases for devitrified glasses. The trend of the Tc is explained based on the assumptions of changes in the Mg2+ coordination number and the amphoterical features of MgO.  相似文献   

6.
Thermal diffusivity (D) at high temperature (T) was measured from 15 samples of commercial SiO2 glasses (types I, II, and III with varying hydroxyl contents) using laser-flash analysis (LFA) to isolate vibrational transport, in order to determine effects of impurities, annealing, and melting. As T increases, Dglass decreases, approaching a constant (~ 0.69 mm2s? 1) above ~ 700 K. From ~ 1000 K to the glass transition, the slope of D is small but variable. Increases of D with T of up to 6% correlate with either low water and/or low fictive temperature and are attributed to removal of strain and defects during annealing. Upon crossing the glass transition, D substantially decreases to 0.46 mm2s? 1 for the anhydrous melt. Hydration decreases Dglass, makes the glass transition occur over wider temperature intervals and at lower T, and promotes nucleation of cristobalite from supercooled melt. Due to the importance of thermal history, a spread in D of about 5% occurs for any given chemical type. Combining prior steady-state, cryogenic data with our average results on type I glass provides thermal conductivity (klat = ρCPD) for type I: klat increases from ~ 0 K, becoming nearly constant above 1500 K, and drops by ~ 30% at Tg. We find that D? 1(T) correlates with thermal expansivity times temperature from ~ 0 K to melting due to both properties arising from anharmonicity.  相似文献   

7.
We report the results of a systematic study of the thermal and optical properties of a new family of tellurite glasses, TeO2–ZnO–BaO (TZBa), as a function of the barium oxide mole fraction and compare them with those of TeO2–ZnO–Na2O (TZN). The characteristic temperatures of this new glass family (glass transition, Tg, crystallization, Tx, and melting, Tm) increase significantly with BaO content and the glasses are more thermally stable (greater ΔT = Tx ? Tg) than TZN glasses. Relative to these, Raman gain coefficient of the TZBa glasses also increases by approximately 40% as well as the Raman shift from ~ 680 cm? 1 to ~ 770 cm? 1. The latter shift is due to the modification of the glass with the creation of non-bridging oxygen ions in the glass network. Raman spectroscopy allows us to monitor the changes in the glass network resulting from the introduction of BaO.  相似文献   

8.
The tracer diffusivities of 45Ca in two different high purity standard soda-lime silica glasses have been measured by the radiotracer method below and above their calorimetric glass transition temperatures. Calorimetric glass transition temperatures (Tg) of 845 K and 867 K have been obtained for standard glasses I and II, respectively, using differential scanning calorimetry (DSC) at a heating rate of 20 K/min. In this paper, we focus on the results of 45Ca diffusion and conductivity of the two standard soda-lime glasses and compare them with 22Na diffusivities also obtained in our laboratory [E.M. Tanguep Njiokep, H. Mehrer, Solid State Ionics 177 (2006) 2839, E.M. Tanguep Njiokep, H. Mehrer, Defect Diffus Forum 237–240 (2005) 282]. The 45Ca diffusion coefficients obtained are found to follow the Arrhenius law, both below (Tanguep Njiokep and Mehrer, 2006, 2005) and above Tg. In the Arrhenius diagram a change of slope of the 45Ca diffusivities appears at 835 K for standard glass I and at 790 K for standard glass II. At the same time, the ionic conductivities display a change in slope at 790 K and 778 K for standard glasses I and II, respectively. These temperatures are somewhat smaller than the calorimetric glass transition temperatures obtained at a heating rate of 20 K/min. Rather, they appear to be close to values of Tg obtained by extrapolation to a vanishing heating rate (Tanguep Njiokep and Mehrer, 2006). The viscosity diffusion of standard glass I is considerably smaller than the conductivity diffusion coefficient and both tracer diffusivities. In both glasses the ionic conductivity is essentially due to the motion of Na ions. The contribution of Ca ions to the conductivity is negligible.  相似文献   

9.
《Journal of Non》2005,351(49-51):3730-3737
Ternary sodium–cobalt–phosphate glasses of the composition (50  x)Na2O–50P2O5xCoCl2 with x varying between 0 and 15 mol% prepared by melt quenching have been characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) techniques. Thermal (Tg, Tc) and electrical properties have been investigated. Infrared spectra reveal the formation of metaphosphate glasses (Q2 tetrahedral units) with symmetric bridging oxygen (P–O–P) and non-bridging oxygen (P–O). The spectra also indicate the formation of P–O–Co bonds in the metaphosphate glasses that replace P–O–Na+ bonds. The results of thermal studies correlate with these FT-IR findings and support the formation of P–O–Co bonds and an increased cross-link density with increasing CoCl2. This results in enhanced chemical durability and increased Tg and Tc of the glasses. The electrical conductivity parameters upon changing the composition have been correlated with structural changes in the glass matrix.  相似文献   

10.
《Journal of Non》2005,351(49-51):3699-3703
Thermally stimulated luminescence (TSL) properties of cerium and terbium doped SiO2 sol–gel glasses were studied after X-ray irradiation in the temperature range 10–700 K. The role of Ce3+ and Tb3+ as recombination centers was shown. The existence of a distribution of trap levels was observed; the activation energies of such a distribution were calculated to extend from about 8 × 10−3 eV up to 1.8 eV for both cerium and terbium doped sol–gel glasses. The effect of a post-densification thermal treatment on TSL properties was also analyzed.  相似文献   

11.
《Journal of Non》2006,352(6-7):695-699
Glasses in the system (100  x)Li2B4O7x(SrO–Bi2O3–0.7Nb2O5–0.3V2O5) (where x = 10, 30 and 50, in molar ratio) were fabricated via melt quenching technique. The compositional dependence of the glass transition (Tg) and crystallization (Tcr) temperatures was determined by differential thermal analysis. The as-quenched glasses on heat-treatment at 783 K for 6 h yielded monophasic crystalline strontium bismuth niobate doped with vanadium (SrBi2(Nb0.7V0.3)2O9−δ (SBVN)) in lithium borate (Li2B4O7 (LBO)) glass matrix. The formation of nanocrystalline layered perovskite SBVN phase was preceded by the fluorite phase as established by both the X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). The dielectric constants for both the as-quenched glass and glass–nanocrystal composite increased with increasing temperature in the 300–873 K range, exhibiting a maximum in the vicinity of the crystallization temperature of the host glass matrix. The electrical behavior of the glasses and glass–nanocrystal composites was characterized using impedance spectroscopy.  相似文献   

12.
A systematic series of (100 ? x)(GeTe4.3) ? xCdI2/ZnI2 far infrared transmitting glasses were prepared by traditional melt-quenching method. ZnI2 (20 mol%) can be introduced in the glassy matrix, while only 10 mol% CdI2 can be incorporated in the Ge-Te-CdI2 glass system. Based on differential thermal analysis (DTA) data, most of the glass samples have good thermal stability. A maximum ΔT value of 115 °C was obtained for the glass composition 90(GeTe4.3)–10ZnI2. The allowed indirect transition optical band gap was calculated according to the classical Tauc equation. It is found that the indirect optical band gap decreased from 0.619 to 0.569 eV with the CdI2 addition and increased from 0.628 to 0.677 eV with the ZnI2 addition. According to infrared transmission spectra, the Ge-Te-CdI2/ZnI2 glasses show wide IR transparency.  相似文献   

13.
《Journal of Non》2006,352(30-31):3224-3229
We present spectroscopic results of PbO–Bi2O3–Ga2O3–BaO glass doped with different concentration of Nd2O3. These glasses have high refractive index (∼2.4) and large spectral transmission window. Measurements of absorption, emission and fluorescence lifetime are presented. From the calculations of the Judd–Ofelt parameters the radiative lifetimes, branching ratios and quantum efficiency of 4F3/2 level are calculated. The highest emission intensity was measured for the sample doped with 0.5 wt% of Nd2O3 with emission cross-section of 2.6 × 10−20 cm2, at 1069 nm, fluorescence lifetime of 110 μs, quantum efficiency of 82% and effective linewidth of 34 nm. The results point out this glass system as good candidate to be used in the development of photonic devices operating in the near infrared spectral range.  相似文献   

14.
《Journal of Non》2006,352(50-51):5403-5407
The electrical, thermal, optical, and morphological properties of CUO doped Bi2O3–B2O3–BaO–ZnO glasses were studied as a PbO-free, low firing transparent dielectric layer for plasma display panels (PDP). CuO improved the transmittance of Bi2O3–B2O3–BaO–ZnO by up to 84% in the visible region, eliminating a yellowish color typical of Bi2O3–B2O3–BaO–ZnO. A slight absorption within the near infrared (NIR) region was also observed. The glass transition temperature (Tg), thermal coefficient of expansion (TCE), and root-mean square (rms) roughness of 0.005 wt% CuO doped Bi2O3–B2O3–BaO–ZnO were found to be 455 °C, 81.4 × 10−7/K, respectively, and 162 ± 14 Å, which satisfied the requirements for a transparent dielectric layer for PDP application.  相似文献   

15.
《Journal of Non》2006,352(32-35):3628-3632
This paper presents the optical characterization of Nd3+ lead silicate glasses (SiO2–Na2CO3–PbO–ZnO), synthesized by means of the fusion method. Absorption, luminescence, lifetime and Raman spectroscopy measurements were performed in order to determine the radiative properties of the glasses. The near infrared luminescence exhibited the typical Nd3+ bands, particularly the band at 1060 nm (4F3/2  4I11/2). The calculated branching ratios for the 4F3/2 level are: β (9/2) = 35%, β (11/2) = 55%, β(13/2) = 9.5% and β (15/2) = 0.5%. The estimated quantum efficiency was about 90%, based on comparison with the Judd Ofelt theory and experimental lifetime measurements.  相似文献   

16.
New chalcohalide glasses from GeS2–In2S3–CsCl pseudo-ternary system were prepared using the conventional melt-quenching method and its glass-forming region has been determined. The differences ΔT (TP ? Tg) of partial glasses are large enough (>100 K) to permit the preparation of performs of considerable size. With the increased content of CsCl, the visible absorption edge (λvis) of these glasses indicates a distinct blue shift while a clear drop of their glass transition temperatures can be seen. The ultrafast non-linearity of partial glasses was measured using the Kerr shutter technique. The non-linear refractive index, n2, was estimated to be in the magnitude of 10?14 cm2/W. Widely transparent range, good glass-forming ability, higher χ(3) and large electronic ultrafast OKE response make these glasses the potential applications in current photonic fields.  相似文献   

17.
《Journal of Non》2006,352(32-35):3598-3602
Thermal lens (TL) measurements were performed in tellurite glasses, 70TeO2–19WO3–7Na2O–4Nb2O5 (mol%), undoped, doped with Er3+ (1.19 × 1020 ions/cm3) and co-doped with Er3+ (1.19 × 1020 ions/cm3)/Tm3+ (1.56 × 1020 ions/cm3). The absolute nonradiative quantum efficiency (ϕ) was determined by the TL method. The ϕ values for Er3+/Tm3+-co-doped and Er3+-doped tellurite glasses were 0.98 and 0.74, respectively. Fluorescence spectra were performed at λe = 488 nm and used to estimate the fluorescence quantum efficiency (η) using the TL results. These values were compared with results obtained by Judd–Ofelt calculations.  相似文献   

18.
M.R. Sahar  K. Sulhadi  M.S. Rohani 《Journal of Non》2008,354(12-13):1179-1181
Er3+-doped tellurite glasses of the (80 ? x)TeO2–20ZnO–(x)Er2O3 system (0.5 mol% ? x ? 2.5 mol%) have successfully been made by melt-quenching technique and their structure has been investigated by means of DTA and Raman spectroscopy. The DTA results show the thermal parameters; such as the glass transition temperature (Tg) and crystallization temperature (Tc) were determined. It is found that this system provides a stable and wide glass formation range in which the glass stability around 99–140 °C may be obtained. The Raman spectroscopy used the structural studies in the glass system. Two Raman shift peaks were observed around 640–670 cm?1 and 720–740 cm?1, which correspond to the stretching vibration mode of TeO4 tbp and TeO3 tp, respectively. It is found that the spectral shift in Raman spectra is depending on the Er2O3 content. This evolution is an indication of the changes in the basic unit of the glass structure.  相似文献   

19.
Using a high purity CdSiP2 polycrystalline charge synthesized in a single-temperature zone furnace, a CdSiP2 single crystal with dimensions of 8 mm in diameter and 40 mm in length was successfully grown by the vertical Bridgman method. The quality of the crystal was characterized by high resolution X-ray diffraction and the full width at half maximum (FWHM) of the rocking curve for the (200) face is 33″. Thermal property measurements show that: the mean specific heat of CdSiP2 between 300 and 773 K is 0.476 J g?1 K?1; the thermal conductivity of the crystal along the a- and c-axes is 13.6 W m?1 K?1 and 13.7 W m?1 K?1 at 295 K, respectively; and the thermal expansion coefficient measured along the a- and c-axes is 8.4×10?6 K?1 and ?2.4×10?6 K?1, respectively. The optical transparency range of the crystal is 578–10,000 nm, and there is no absorption loss in the spectrum from 0.7 to 2.5 μm, as often exists with ZnGeP2 crystals grown from the melt.  相似文献   

20.
Effective internal shear stress σi induced by torsional deformation of Zr46(Cu4/5Ag1/5)46Al8 and Zr46Cu46Al8 bulk metallic glasses different by the glass-forming ability of the maternal melts has been determined by measurements of stress relaxation upon stepwise unloading. It has been found that the ratio σi/σ0 (σ0 is the initially applied shear stress) decreases upon increasing the temperature from ≈ 0.8 at T = 450K (T  0.64 × Tg) to ≈ 0.08 at T = 638K (T  0.91 × Tg) independently of σ0 and glass composition. The obtained result is in good agreement with earlier data obtained on ribbon metallic glasses. The origin of deformation-induced internal stresses and their connection with deformation mechanisms of metallic glasses has been briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号