首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 818 毫秒
1.
《Journal of Non》2006,352(28-29):3035-3040
Perovskite-type LaMxFe1−xO3 (M = Ni, Co) nanoparticles were synthesized by a sol–gel method using propylene oxide as a gelation agent. The resulting nanoparticles show a narrow size distribution with particles in the 30–50 nm range. A highly homogeneous wet gel was formed during the hydrolysis and condensation of the precursor salts. This high homogeneity allows a substantial reduction of the calcination temperature and time required for the formation of the perovskite phase as compared with the solid-state and other wet solution routes, reducing drastically the aggregation of the particles during calcination.  相似文献   

2.
Editorial Board     
The employment of more than 10 μm thick AlN epilayers on SiC substrates for AlGaN/GaN high-electron-mobility transistors (HEMTs) substantially raises their performance in high-power energy-efficient amplifiers for 4G wireless mobile stations. In this paper, structural properties and surface morphology of thick AlN epilayers deposited by hydride vapor phase epitaxy (HVPE) on off-axis conductive 6H-SiC substrates are reported. The epilayers were examined in detail by high-resolution X-ray diffraction (XRD), atomic force microscopy (AFM), Nomarski differential interference contrast (DIC), scanning electron microscopy (SEM), and selective wet chemical etching. At optimal substrate preparation and growth conditions, a full width at half-maximum (FWHM) of the XRD rocking curve (RC) for the symmetric (00.2) reflex was very close to that of the substrate (less than 40 arcsec) suggesting low screw dislocation density in the epilayer (~106 cm?2) and small in-plane tilt misorientation. Reciprocal space mapping around asymmetric reflexes and measured lattice parameters indicated a fully relaxed state of the epilayers. The unit-cell-high stepped areas of the epilayers with 0.5 nm root mean square (RMS) roughness over 1×1 μm2 scan were alternated with step-bunching instabilities up to 350 nm in height. Low warp of the substrates makes them suitable for precise epitaxy of HEMT structures.  相似文献   

3.
Inverted single crystalline SiC nanoneedles with hexagonal cross-sections were grown on the surface of carbon fibers by high-frequency induction heating two-crucibles without using any catalysts. we employ a carbothermal reduction method of silicon monoxide with coke fibers to synthesize SiC nanoneedles within 5 min. The as-grown SiC nanoneedles shows bright blue color on carbon fibers in the [1 1 1] orientation of 3C-SiC structure. The needle-like structures grew on the substrate while the spindle portion was sticked into the carbon fibers which were different from other nanoneedles. Finally, the growth mechanism of SiC nanoneedles is proposed to be an axial direction growth with a driving force of screw dislocation and a radial direction growth with vapor–solid mechanism meanwhile.  相似文献   

4.
We report the effects of P incorporation on the nanometer-scale structural and electrical properties of amorphous and nanocrystalline mixed-phase Si:H films. In the intrinsic and weakly P-doped (3 × 1018 at/cm3) films, the nanocrystallites aggregate to cone-shaped structures. Conductive atomic force microscopy images showed high current flows through the nanocrystalline cones and a distinct two-phase structure in the micrometer range. Adding PH3 into the processing gas moved the amorphous/nanocrystalline transition to a higher hydrogen dilution ratio required for achieving a similar Raman crystallinity. In a heavily P-doped (2 × 1021 at/cm3) film, the nanocrystalline aggregation disappeared, where isolated grains of nanometer sizes were distributed throughout the amorphous matrix. The heavily doped mixed-phase film with 5–10% crystal volume fraction showed a dramatic increase in conductivity. We offer an explanation for the nanocrystalline cone formation based on atomic hydrogen enhanced surface diffusion model, and propose that the coverage of P-related radicals on the existing nanocrystalline surface during film growth and the P segregation in grain boundaries are responsible for preventing new nucleation on the surface of the existing nanocrystallites, resulting in nanocrystallites dispersed throughout the amorphous matrix.  相似文献   

5.
We have prepared highly-crystallized germanium (Ge) films on quartz and evaluated their local charge trapping and electrical conduction properties from topographic and surface potential images simultaneously taken by a conductive atomic force microscopy (AFM) during and after current application to Ge films. By applying a bias of 10 V at which the current of ~ 8 mA flows between the co-planer electrodes on Ge films, the surface potential image which was uniform before bias application shows in-plane inhomogeneity within ~ 1.0 mV commensurate with the surface morphology. Such potential images remained inhomogeneous at zero bias for more than two hours after bias application. The inhomogeneous potential images can be interpreted in terms of the difference in electron concentration in highly-crystallized Ge films presumably caused by electron charging in the grain boundaries, indicating direct detection of electrically separated grain structures and resultant percolation current pass.  相似文献   

6.
《Journal of Non》2007,353(5-7):490-493
Rare-earth doped photonic materials and structures have been prepared by sol–gel processing, in the form of 1D photonic bandgap multilayer stacks of silica and titania. A significant enhancement of the Er3+ emission at ca. 1530 nm occurred when these ions were inserted into Bragg mirrors and microcavities. In Er3+/Yb3+ co-doped structures, an efficient energy transfer at 980 nm was observed from Yb3+ to Er3+ when these ions were in close proximity and especially when they were simultaneously present, in the same defect layer, with a 1530 nm photoluminescence enhancement of up to ∼25 times being observed for excitation at 980 nm, compared to the excitation of the same microcavities samples at 514.5 nm.  相似文献   

7.
Owing to their structure of small phosphate units, phosphate invert glasses have high crystallisation tendencies, which make processing of the melt challenging. The aim was to improve their processing by (1) increasing the number of glass components and (2) incorporating intermediate oxides (TiO2, MgO and ZnO). Glasses (P2O5–CaO–MgO–Na2O) were produced by a melt-quench route. In series 1, TiO2 was partially substituted for Na2O, and the number of components was increased by partially substituting strontium for calcium, zinc for magnesium and potassium for sodium on a molar base. In series 2, the MgO + ZnO content in the multicomponent glass was varied between 0 and 20 mol% in exchange for CaO + SrO. Differential scanning calorimetry showed a significant increase of the processing window in the multicomponent glasses, explained by an increased energy barrier for crystallisation owing to increased entropy of mixing. The MgO + ZnO content also significantly improved the processing window from 117 K (0 mol% MgO + ZnO) to 185 K (20 mol%), owing to their large field strength. These results show that the processing of phosphate invert glasses for biomedical applications can be improved significantly by incorporating ions such as strontium or zinc which are also known to have therapeutic effects.  相似文献   

8.
《Journal of Non》2007,353(8-10):911-913
We present the results of experimental investigations of magnetostatic properties of Fe-based amorphous wires with diameter about 100 μm. The samples were annealed at different conditions. The as-quenched sample had a weak increase (about 5%) of the magnetization with magnetic field decrease – the negative differential magnetic permeability could be observed in its hysteresis loops. The coercive force was about 0.2 Oe. The conventional annealing decreased the value of the saturation field down to 5 Oe without change of the coercive force value. When the annealing was accompanied with torsion stress the coercive force became less than 50 mOe. After the current annealing any peculiarities disappeared in magnetization in a weak magnetic field.  相似文献   

9.
《Journal of Non》2007,353(30-31):2893-2899
Novel mesoporous foamed carbons were synthesized from carbonization of organic gels templated by polymer micro-colloidal particles. Resorcinol and formaldehyde were allowed to gel in dilute polymethylmethacrylate (PMMA) microemulsion latex, subsequently the water in the gel was solvent exchanged with methanol and the wet gel was dried under ambient pressure. Pyrolysis was carried out at 800 °C to afford carbon xerogels with porous structures similar to those of resorcinol–formaldehyde (RF) carbon aerogels, but of higher density (>1.2 g/cm3), which provide the carbon materials with relatively higher volumetric surface area (up to 918 m2/cm3). Brunauer–Emmett–Teller (BET) adsorption results indicate that PMMA micro-colloid particles with mean diameter 25 nm contributed to the formation of mesopores of mean diameter at 5 nm.  相似文献   

10.
《Journal of Crystal Growth》2007,298(2):164-169
We have studied the desymmetrization of the polyhedral crystalline shape of tetragonal lysozyme crystals due to the growth rate differences of the equivalent {1 0 1} planes. Using atomic force microscopy, we have observed the evolution of the multifaceted structures composed of four equivalent {1 0 1} faces during growth. In our growth condition, lateral step flow, where a large density of dislocations acts as a source of steps, is the dominant growth mechanism. The measured step flow velocities are almost independent of the separation between the neighboring steps, revealing that the local face normal growth rate is determined by the local step density. By tracing the motion of the vertex surrounded by the {1 0 1} faces, we have found that the desymmetrization of the crystalline shape is due to the large fluctuation of the local face normal growth rate, which is comparable in magnitude to the average growth rate.  相似文献   

11.
The effect of selective area growth (SAG) on wafer bowing of GaN-based light-emitting diodes (LEDs) is investigated. The SAG of LED structures was carried out on a silicon dioxide (SiO2) mask pattern with periodic 1000×1000 μm openings, along the sapphire 〈1?1 0 0〉 and 〈?1?1 2 0〉 directions. The morphology of a selectively-grown n-GaN epilayer was examined in relation to various growth parameters such as temperature, pressure, and V/III ratio. Under optimized growth conditions, formation of a ridge-shaped epilayer with a v-pit free smooth surface was realized. Furthermore, the ridge-shaped vertical LED structure, after the removal of the sapphire substrate by laser lift-off (LLO) showed less wafer bowing compared with conventional vertical LED structures. This is attributed to the suppression of lateral strain and dislocations during the site-selective growth process, due to a reduction in the lateral dimensions.  相似文献   

12.
Creation of point defects by ArF (6.4 eV) and F2 laser (7.9 eV) irradiation in synthetic “wet” silica glass thermally loaded with interstitial O2 molecules was studied by optical absorption, electron paramagnetic resonance and infrared absorption. The presence of excess oxygen caused a significant increase of laser-induced ultraviolet (UV) absorption, which was 4 times (7.9 eV-irradiation) and > 20 times stronger (ArF irradiation) as compared to O2-free samples. The spectral shape of photoinduced absorption nearly completely coincided with the spectral shape of oxygen dangling bonds (NBOHC) in 3 to 6.5 eV regions. The contribution of Si dangling bonds (E' centers) was less than few % and was not dependent on oxygen content. Peroxy radical defects were not detected. The photoinduced NBOHCs thermally decayed at 400...500 C. However, a subsequent brief 7.9 eV irradiation restored their concentration up to 70%. This sensitization can be in part attributed to generation of interstitial Cl2 and HCl. These data show that oxygen stoichiometry is an important factor for maximizing laser toughness of wet silica.  相似文献   

13.
A.V. Shlyakhtina  Young-Jei Oh 《Journal of Non》2008,354(15-16):1633-1642
Transparent SiO2 aerogels were prepared by two-step sol–gel processing followed by ambient pressure drying at temperatures from 70 to 250 °C. The wet gels were synthesized via acid–base catalysis using tetraethyl orthosilicate as a silica precursor and isopropanol as a solvent. Isopropanol was exchanged with n-butanol, and the gel surface was modified using a trimethylchlorosilane solution in n-butanol. Next, the solvent was exchanged in several steps with saturated hydrocarbon in order to obtain pore fluids containing azeotropic mixtures of water, n-butanol and a corresponding hydrocarbon (hexane, heptane, octane, nonane). Ambient pressure drying was performed in two steps, at the boiling points of the ternary azeotropes and hydrocarbons, respectively. In this way, transparent, crack-free aerogels of different shapes, with a specific surface area of 1000 m2/g, average pore diameter of ~40–55 Å and density in the range 0.4–0.57 g/cm3 were obtained.  相似文献   

14.
《Journal of Non》2007,353(5-7):703-707
The change of optical and electrical properties of SiO2 layer on Si single crystal exposed to YAG:Nd laser radiation has been found experimentally. The second harmonic of YAG:Nd laser was used as a source of light. Before irradiation the SiO2 layer with thickness 0.75 μm had red color in reflecting light due to the interference. After irradiation with the laser with intensity of more than 3.5 MW/cm2 red color changed to yellow. However, samples with thickness 0.21 μm did not change color after irradiation. We explain such peculiarities of optical properties by change of optical path. Capacity (C) measurements of SiO2 layer with thickness 0.21 μm by the method of capacity–voltage characteristics have shown a decrease of C to more than 40%. It is possible if real part of dielectric permittivity (K) decreases or thickness of the SiO2 layer increases. Atomic force microscope and profilemeter measurements did not show any change of surface roughness for the SiO2 layer with thickness 0.21 μm. We suppose that after irradiation of the SiO2 layer decrease of K takes place due to the formation of nanopores in SiO2 or/and generation of the charged point defect at the interface of Si–SiO2. Particularly the first is in agreement with measurements of micro hardness and capillary effect.  相似文献   

15.
We prepared SiO2@Ag core–shell nanospheres: silver nanoparticles (~4 ± 2 nm in diameter) coated silica nanospheres (~50 ± 10 nm in diameter). The preparation route is a modification of the Stöber method, and involves the preparation of homogeneous silica spheres at room temperature, combined with the deposition of silver nanoparticles from Ag+ in solution, by using water/ethanol mixtures, tetraethyl-orthosilicate as Si source and silver nitrate as Ag source in a single-pot wet chemical route without an added coupling agent or surface modification, which leads to the formation of core@shell homogeneous nanospheres. We present the preparation and characterization of the SiO2@Ag core–shell nanospheres and also of bare silica spheres in the absence of silver, and propose a reaction mechanism for the formation of the core–shell structure.  相似文献   

16.
In this work is presented the fabrication of a thin film membrane as a bio-transducer for aural assistance detection, therefore it will operate at low pressure. The resonant membrane was deposited by PECVD technique at low temperature of deposition T = 270 °C, using SiH4, GeH4, and Boron gases. The membrane was suspended on a micromachined crystalline silicon frame obtained by wet chemical etching. The a-SiGe:B film presented a resistivity of 2.46 × 103 (Ω-cm), resistance of 20.8 kΩ. Using these experimental data we succeeded in designing a simple structure for sensing low pressure variations. The output voltage of the sensor was measured for a range of pressure from 0 to 3000 Pa and at bias voltage of 10 V.  相似文献   

17.
The synthesis optimization of three-dimensional photonic crystals (direct and inverse opals) is discussed in terms of the influence of processing parameters on the final optical quality. A colloidal/sol–gel route, starting with the self-organization of polystyrene microspheres into opal structures by convective self-assembly, followed by infiltration with a dielectric matrix precursor sol and heat treatment, has been followed. Several substrate hydrophilization methods have been tested and different substrates. Sol–gel infiltration of the opal template interstices with silica was achieved by dip-coating or micro-syringe application and it was followed by removal of the polymeric template. The concentration of the colloidal sol, containing polystyrene spheres of 235 or 460 nm in diameter, was optimized. The structural and optical properties of the opals and inverse opals have been studied by field emission scanning electron microscopy and optical reflectivity spectroscopy, in order to assess the relationship between their structure and the photonic properties obtained. By using borosilicate glass substrates hydrophilized with hydrochloric acid, colloidal photonic crystals of good quality have been obtained, with well ordered regions up to ~100 μm2. By monitoring the effective refractive index change with relative humidity of the surrounding atmosphere, using spectroscopic ellipsometry with an environmental chamber, it was concluded that the present photonic crystals are suitable for humidity sensing applications.  相似文献   

18.
We have used plasma enhanced chemical vapor deposition (PECVD) to deposit silicon thin films (~0.2–1 μm) with different crystallinity fractions on Nanosensors PtIr5 coated atomic force microscopy (AFM) cantilevers (450 × 50 × 2 μm3). Microscopic measurements of Raman scattering were used to map both internal stress and extrinsic stress induced in the films by bending the cantilevers using a nanomanipulator (Kleindiek Nanotechnik MM3A). Thanks to the excellent elasticity of the cantilevers, the films could be bent to curvature radii down to 300 μm. We observed the stress induced shift of the TO–LO phonon Raman band of more than 3 cm?1 for fully microcrystalline film corresponding to the stress ~0.8 GPa. The shift of the similar film with amorphous structure was ~2.5 cm?1.  相似文献   

19.
《Journal of Non》2007,353(5-7):510-513
We investigated the correlation between the luminescence properties and the surface structures of submicron silica particles prepared by the Stöber method. After annealing in a non-oxidizing atmosphere, the submicron-sized silica particles show a broad photoluminescence (PL) band at 500–540 nm by excitation at an ultraviolet wavelengths (254 and 365 nm), and the one at the 600 nm by excitation an Ar+ laser (488 nm). The PL appeared to result from the removal of impurities and subsequent formation of several luminescent structures on the internal surface of the primary particles by thermal annealing.  相似文献   

20.
Amorphous carbon nitride (a-CNx) films were formed from the decomposition of BrCN in the electron cyclotron resonance plasmas of He, Ne, and Ar. The local structures of these films were investigated by the carbon-K near edge X-ray absorption fine structure. It was found that the density of C=C bond in the film prepared with Ar plasma was 7–9 times larger than that with He or Ne plasmas. The [N]/([C] + [N]) ratios of films were estimated from the X-ray photoelectron spectra as 0.34 ± 0.05, 0.35 ± 0.04, and 0.28 ± 0.05 for the He, Ne, and Ar plasmas, respectively. It was found that C atoms in the sp2-hybridized state were incorporated into the two-dimensional and/or one-dimensional conjugated structures composed of ? C=N? in the cases of the He and Ne plasmas and of ? C=C? in the case of the Ar plasma. The compositions and the local structures of films can be explained in terms of a model based on the cyclazine-like network structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号