首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stretched exponential luminescence decay observed at temperatures lower than 20 K transits to the power law decay due to the electron-hopping at localized band tail states near 60 K in the hydrogenated amorphous silicon (a-Si:H). The luminescence decay at 4.2 K in a-Si:H is quite similar to that of Si-nanoparticles in the porous Si (p-Si). It is explained from the comparison with p-Si that the slow luminescence of the life time of ~ 1 ms is due to the recombination of excitonic electron–hole pairs at the spin triplet state quantum-confined in the hydrogen-free Si nanostructure in a-Si:H. The fast luminescence of the life time of ~ 1 μs is due to the recombination of the pairs at the spin-singlet state and the life time is explained as due to the indirect optical transition.  相似文献   

2.
《Journal of Non》2006,352(9-20):1217-1220
We have investigated PECVD-deposited ultrathin intrinsic a-Si:H layers on c-Si substrates using UV-excited photoemission spectroscopy ( = 4–8 eV) and surface photovoltage measurements. For samples deposited at 230 °C, the Urbach energy is minimal, the Fermi level closest to midgap and the interface recombination velocity has a minimum. The a-Si:H/c-Si interface density of states is comparable to that of thermally oxidized silicon interfaces. However, the measured a-Si:H dangling bond densities are generally higher than in thick films and not correlated with the Urbach energy. This is ascribed to additional disorder induced by the proximity of the a-Si:H/c-Si interface and H-rich growth in the film/substrate interface region.  相似文献   

3.
《Journal of Non》2006,352(9-20):1130-1133
Transient spectroscopies such as time analyzed transients spectroscopy (TATS) provide powerful means of comparing density of states in new forms of amorphous like materials. These spectroscopies were utilized to study hydrogenated amorphous silicon (a-Si:H) and hydrogenated polymorphous silicon (pm-Si:H) grown at different pressures using PECVD. The results reveal marked differences between the two materials. In case of a-Si:H, as expected characteristic emission from a broad density of states in the form of stretched exponentials is observed. The corresponding spectra for pm-Si:H, on the other hand are dominated by nearly exponential fast current decay processes with discrete energies between 0.25 eV and 0.36 eV. The spectra of pm-Si:H grown at different pressures show contributions from crystallite inclusions and the medium in varying degree.  相似文献   

4.
We report a quasi-analytical calculation describing the heterojunction between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si) at equilibrium. It has been developed and used to determine the carrier sheet density in the strongly inverted layer at the a-Si:H/ c-Si interface. The model assumes an exponential band tail for the defect distribution in a-Si:H. The effects of the different parameters involved in the calculation are investigated in detail, such as the Fermi level position in a-Si:H, the density of states and the band offsets. The calculation was used to interpret temperature dependent planar conductance measurements carried out on (n) a-Si:H/ (p) c-Si and (p) a-Si:H/(n) c-Si structures, which allowed us to confirm a previous evaluation of the conduction band offset, ?EC = 0.18 ± 0.05 eV, and to evaluate the valence band offset: ?EV = 0.36 ± 0.05 eV at the a-Si:H/ c-Si heterojunction. The results are placed in the frame of recent publications.  相似文献   

5.
L. Korte  M. Schmidt 《Journal of Non》2008,354(19-25):2138-2143
A variant of photoelectron spectroscopy with near-UV light excitation was established and applied to an n-type doping series of ultra-thin a-Si:H layers (layer thickness ~10 nm). Using this technique, the position of the surface Fermi level EFs is obtained and the density of recombination active defect states in the a-Si:H band gap down to ~1015 states/cm3 can be detected. Defect densities are generally about one order of magnitude higher than in the bulk of thicker (several 100 nm) layers, and the minimum achievable distance of EFs from the conduction band is ~360 mV for doping with 104 ppm PH3. The optimum doping for the fabrication of solar cells is almost one order of magnitude lower. This discrepancy may be explained by enhanced recombination at the a-Si:H/c-Si interface at high doping levels, and in addition by an efficient recombination pathway where charge carriers tunnel from c-Si via a-Si:H band tail states into the a-Si:H and subsequently recombine at dangling bond states.  相似文献   

6.
We have fabricated and characterized diamond based heterojunctions composed of homoepitaxial diamond (B-doped film: p type) and hydrogenated amorphous silicon (a-Si:H film: n-type). All devices include an intrinsic amorphous silicon interface (i-a-Si:H). (J–V) characteristics of a-Si:H heterojunctions measured from 300 K to 460 K present a very high rectification ratio (in the range 108–109) and a current density of 10 mA/cm² under 2 V of forward bias. The reverse current up to ? 4 V is below the detection limit in the whole temperature range. The devices present two regimes of operation indicating that more than one mechanism governs the carrier transport. These characteristics are compared with a Schottky barrier diode (SBD) using a tungsten carbide metal on top of the p-type diamond as a Schottky contact. The SBD device exhibits J–V characteristic with an ideality factor n close to one and the heterojunction follows this trend for low bias voltages whereas for bias voltage above 1 V a second regime with larger ideality factors n ~ 3.6 is observed. These results point out the prominent role of transport mechanisms at heterointerface between the a-Si:H layers and the p-type doped diamond which degrades the current injection. The breakdown voltage reached ? 160 V indicating the good quality of the deposited layers.  相似文献   

7.
《Journal of Non》2006,352(9-20):1196-1199
Optical absorption coefficient spectra of hydrogenated microcrystalline cubic silicon carbide (μc-3C–SiC:H) films prepared by Hot-Wire CVD method have been estimated for the first time by resonant photothermal bending spectroscopy (resonant-PBS). The optical bandgap energy and its temperature coefficient of μc-3C–SiC:H film is found to be about 2.2 eV and 2.3 × 10−4 eV K−1, respectively. The absorption coefficient spectra of localized states, which are related to grain boundaries, do not change by exposure of air and thermal annealing. The localized state of μc-3C–SiC:H has different properties for impurity incorporation compared with that of hydrogenated microcrystalline silicon (μc-Si:H) film.  相似文献   

8.
Details of light-induced annealing of hole trap state in undoped hydrogenated amorphous silicon (a-Si:H) have been studied; it has been found that prolonged illumination significantly reduces the density of hole trap states in the energy range deeper than 0.5 eV, and subsequent thermal annealing increases the density of hole trap states and restored the sample to the initial state before the illumination. We can speculate, from the experimental results and discussion in this work, that defect conversion processes are taking place during the long exposure to light; Si dangling bonds are generated from the precursors or latent sites which manifested as hole trap states located between 0.5 and 0.7 eV from the top of the valence band.  相似文献   

9.
Effusion measurements of hydrogen and of implanted helium are used to characterize the presence of voids in hydrogenated amorphous silicon (a-Si:H) materials as a function of substrate temperature, hydrogen content, etc. For undoped plasma-grown a-Si:H, interconnected voids are found to prevail at hydrogen concentrations exceeding 15–20 at.%, while isolated voids which act as helium traps appear at hydrogen concentrations  15 at.%. The concentration of such isolated voids is estimated to some 1018/cm3 for device-grade undoped a-Si:H deposited at a substrate temperature near 200 °C. Higher values are found for, e.g., doped material, hot wire grown a-Si:H and hydrogen-implanted crystalline Si. The results do not support recent suggestions of predominant incorporation of hydrogen in a-Si:H in (crystalline silicon type) divacancies, since such models predict a concentration of voids (which act as helium traps) in the range of 1021/cm3 and a correlation between void and hydrogen concentrations which is not observed.  相似文献   

10.
The “luminescence gap” is used instead of the thermalization gap and the hopping-gap because the gap is obtained from the luminescence measurement. The luminescence gaps in hydrogenated amorphous silicon (a-Si:H) are observed in the temperature range from 4.2 to 225 K for the films prepared at different substrate temperatures 170 to 300 °C by plasma CVD. It is shown from the temperature dependence of the luminescence gap that the luminescence edges are at the localized band tail states at which the waiting time for the hopping is equal to the life time of the luminescence. The excitation energy dependence of the luminescence peak energy similar to that of the porous Si has been observed.  相似文献   

11.
We report improvement in characteristics of hydrogenated amorphous silicon (a-Si:H ) p-i-n structured solar cells by high-pressure H2O vapor heat treatment. a-Si:H p-i-n solar cells were formed on glass substrates coated with textured SnO2 layer. P-, i-, and n-type a-Si:H layers were subsequently formed by plasma enhanced chemical vapor deposition. Finally an indium-tin-oxide layer was coated on the n-type a-Si:H surface. Heat treatment at 210 °C with 2 × 105 Pa H2O vapor for 1 h was applied to the a-Si:H p-i-n solar cells. Electrical characteristics were measured when samples were kept in dark and illuminated with light of AM 1.5 at 100 mW/cm2. The heat treatment with H2O vapor increased fill factor (FF) and the conversion efficiency from 0.54 and 7.7% (initial) to 0.57 and 8.4%, respectively. Marked improvement in solar cell characteristics was also observed in the case of a poor a-Si:H p-i-n solar cell. FF and the conversion efficiency were increased from 0.29 and 3.2% (initial) to 0.56 and 7.7%, respectively.  相似文献   

12.
We investigated the electrical properties of polycrystalline silicon (poly-Si) thin film transistors (TFTs) employing field-enhanced solid phase crystallization (FESPC). An n+ amorphous silicon (n+ a-Si) layer was deposited to improve the contact resistance between the active Si and source/drain (S/D) metal instead of ion doping. By using CV measurement method, we could explain the diffused phosphorous ions (P+ ions) on the channel surface caused a negatively shifted threshold voltage (VTH) of ?7.81 V at a drain bias of 0.1 V, and stretched out a subthreshold swing (S) of 1.698 V/dec. This process was almost compatible with the widely used hydrogenated amorphous silicon (a-Si:H) TFT fabrication process and also offers a better uniformity when compared to the conventional laser-crystallized poly-Si TFT process because of non-laser crystallization.  相似文献   

13.
In this paper, we present a three-dimensional nanorod solar cell design. As the backbone of the nanorod device, density-controlled zinc oxide (ZnO) nanorods were synthesized by a simple aqueous solution growth technique at 80 °C on ZnO thin film pre-coated glass substrate. The as-prepared ZnO nanorods were coated by an amorphous hydrogenated silicon (a-Si:H) light absorber layer to form a nanorod solar cell. The light management, current–voltage characteristics and corresponding external quantum efficiency of the solar cells were investigated. An energy conversion efficiency of 3.9% was achieved for the nanorod solar cells with an a-Si:H absorber layer thickness of 75 nm, which is significantly higher than the 2.6% and the 3.0% obtained for cells with the same a-Si:H absorber layer thickness on planar ZnO and on textured SnO2:F counterparts, respectively. A short-circuit current density of 11.6 mA/cm2 and correspondingly, a broad external quantum efficiency profile were achieved for the nanorod device. An absorbed light fraction higher than 80% in the wavelength range of 375–675 nm was also demonstrated for the nanorod solar cells, including a peak value of ~ 90% at 520–530 nm.  相似文献   

14.
《Journal of Non》2006,352(9-20):1071-1074
We report radiation effects on intrinsic a-Si:H thin films subjected to a 1.5 MeV He4 beam for particle fluences up to 1016 cm−2. Photothermal deflection spectroscopy is used to obtain information on the sub-gap density of states. Photoconductivity detects changes in the μτ-product of the electrons. Steady-state photocarrier grating technique is used for measuring the ambipolar diffusion length and estimating the hole μτ-product. The 1.5 MeV He4 beam radiation results in pronounced changes in the a-Si:H absorption spectrum. Optical absorption due to deep defects increases with particle fluence by more than one order of magnitude. Electronic transport properties consistently degrade with increasing particle fluence and correlate with the density of radiation-induced defects.  相似文献   

15.
Hydrogenated polymorphous silicon (pm-Si:H) thin films have been deposited by plasma-enhanced chemical vapor deposition at high rate (8–10 Å/s), and a set of complementary techniques have been used to study transport, localized state distribution, and optical properties of these films, as well as the stability of these properties during light-soaking. We demonstrate that these high deposition rate pm-Si:H films have outstanding electronic properties, with, for example, ambipolar diffusion length (Ld) values up to 290 nm, and density of states at the Fermi level well below 1015 cm?3 eV?1. Consistent with these material studies, results on pm-Si:H PIN modules show no dependence of their initial efficiency on the increase of the deposition rate from 1 to 10 Å/s. Although there is some degradation after light-soaking, the electronic quality of the films is better than for degraded standard hydrogenated amorphous silicon (values of Ld up to 200 nm). This result is reflected in the light-soaked device characteristics.  相似文献   

16.
C.H. Hsu  Y.P. Lin  H.J. Hsu  C.C. Tsai 《Journal of Non》2012,358(17):2324-2326
We employed the low temperature hydrogenated amorphous silicon nitride (a-SiNx:H) prepared by plasma-enhanced chemical vapor deposition as a refractive index (n) matching layers in a silicon-based thin-film solar cell between glass (n = 1.5) and the transparent conducting oxide (n = 2). By varying the stoichiometry, refractive index and thickness of the a-SiNx:H layers, we enhanced the spectral response and efficiency of the hydrogenated amorphous silicon thin-film solar cells. The refractive index of a-SiNx:H was reduced from 2.32 to 1.78. Optimizing the a-SiNx:H thickness to 80 nm increased the JSC from 8.3 to 9.8 mA/cm2 and the corresponding cell efficiency increased from 4.5 to 5.3%, as compared to the cell without the a-SiNx:H index-matching layer on planar substrate. The a-SiNx:H layers with graded refractive indices were effective for enhancing the cell performance.  相似文献   

17.
T. Matsui  K. Ogata  C.W. Chang  M. Isomura  M. Kondo 《Journal of Non》2008,354(19-25):2468-2471
We report on the carrier collection characteristics of hydrogenated microcrystalline silicon–germanium (μc-Si1?xGex:H) p–i–n junction solar cells fabricated by low-temperature (~200 °C) plasma-enhanced chemical vapor deposition. Spectral response measurements reveal that the Ge incorporation into absorber i-layer reduces the quantum efficiencies at short wavelengths. Furthermore, the illumination of the solar cells for x ? 0.35, particularly in the wavelength range of <650 nm, induces a strong injection-level-dependent p–i interface recombination and a weak collection enhancement in the bulk. These results indicate that space charges near the p–i interface are largely negative, which gives rise to an electric field distortion in the i-layer. We attribute the negative space charges to the presence of the acceptor-like states that are responsible for the strong p-type conduction observed in undoped μc-Si1?xGex:H films for large Ge contents.  相似文献   

18.
The electronic properties of a-Si:H vary with hydrogen passivation of dangling bond defects. It appears this effect is also operative in semiconducting amorphous hydrogenated boron carbide (a-B5C:H). Therefore, the ability to quantify the amount of hydrogen will be key to development of the materials science of a-B5C:H. The results of an initial investigation probing the ability to quickly correlate hydrogen concentration in a-B5C:H films with infrared spectroscopy are reported. a-B5C:H thin films were growth on Si (1 1 1) substrates by plasma-enhanced chemical vapor deposition (PECVD) using sublimed orthocarborane and argon as the precursor gas. Nuclear reaction analysis (NRA) was performed to quantify the atomic concentration of H in the a-B5C:H films. While the observed vibronic structure does not show stretches due to terminal C–H or bridging B–H–B, analysis of the terminal B–H stretch at ~2570 cm?1 gives a proportionality constant of A = 2 × 1022 cm?2. We conclude that the methods previously developed for correlating H concentration to infrared data in a-Si:H are similarly viable for a-B5C:H films.  相似文献   

19.
Hydrogenated amorphous silicon thin films doped with chalcogens (Se or S) were prepared by the decomposition of silane (SiH4) and H2Se/H2S gas mixtures in an RF plasma glow discharge on 7059 corning glass at a substrate temperature 230 °C. The illumination measurements were performed on these samples as a function of doping concentration, temperature and optical density. The activation energy varied with doping concentration and is higher in Se-doped than S-doped a-Si:H thin films due to a low defect density. From intensity versus photoconductivity data, it is observed that the addition of Se and S changes the recombination mechanism from monomolecular at low doping concentration films to bimolecular at higher doping levels. The photosensitivity (σph/σd) of a-Si, Se:H thin films decreases as the gas ratio H2Se/SiH4 increased from 10?4 to 10?1, while the photosensitivity of a-Si, S:H thin films increases as the gas ratio H2S/SiH4 increased from 6.8 × 10?7 to 1.0×10?4.  相似文献   

20.
The near-surface dielectric function ε(?ω) of hydrogenated amorphous silicon (a-Si:H) films has been derived from X-ray photoelectron energy-loss spectra, over the energy range 0–40 eV. Removal of low lying single-electron excitations is a prerequisite step to proceed to the derivation of the single plasmon energy loss function Im[? 1/ε(?ω)] due to collective electron oscillations. Several methods are compared to separate interband transitions from bulk or surface plasmons excitation. The shape of interband excitation loss in the range 1–10 eV can be described by a Henke function; alternatively, its removal using a sigmoid weighting function is a low-noise and reliable method. After deconvolution of multiple plasmon losses and self-consistent elimination of surface plasmon excitation, the single plasmon loss distribution allows recovery of optical (ellipsometry) data measured in the near-UV to visible range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号