共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we present a systematic study on the crystallization kinetics and the magnetic properties of melt-spun Fe80B10Si10 ? xGex (x = 0.0 ? 10.0) amorphous alloys. The activation energy for crystallization, determined by differential scanning calorimetry, displayed a strong dependence on the Ge content, reflecting a deleterious effect on the alloys' thermal stability and their glass forming ability with increasing Ge concentration. On the other hand, the alloys exhibited excellent soft magnetic properties, i.e., high saturation magnetization values (around 1.60 T), alongside Curie temperatures of up to 600 K. Complementary, for increasing Ge substitution, the ferromagnetic resonance spectra showed a microstructural evolution comprising at least two different magnetic phases corresponding to a majority amorphous matrix and to Fe(Si, Ge) nanocrystallites for x ≥ 7.5. 相似文献
2.
We report on the carrier collection characteristics of hydrogenated microcrystalline silicon–germanium (μc-Si1?xGex:H) p–i–n junction solar cells fabricated by low-temperature (~200 °C) plasma-enhanced chemical vapor deposition. Spectral response measurements reveal that the Ge incorporation into absorber i-layer reduces the quantum efficiencies at short wavelengths. Furthermore, the illumination of the solar cells for x ? 0.35, particularly in the wavelength range of <650 nm, induces a strong injection-level-dependent p–i interface recombination and a weak collection enhancement in the bulk. These results indicate that space charges near the p–i interface are largely negative, which gives rise to an electric field distortion in the i-layer. We attribute the negative space charges to the presence of the acceptor-like states that are responsible for the strong p-type conduction observed in undoped μc-Si1?xGex:H films for large Ge contents. 相似文献
3.
A.G. Kazanskii Guanglin Kong Xiangbo Zeng Huiying Hao Fengzhen Liu 《Journal of Non》2008,354(19-25):2282-2285
The results of conductivity, photoconductivity and constant photocurrent method absorption measurements by DC and AC methods in hydrogenated silicon films with mixed amorphous–nanocrystalline structure are presented. A series of diphasic silicon films was deposited by very high frequency plasma enhanced chemical vapor deposition technique, using different hydrogen dilution ratios of silane. The increase of hydrogen dilution ratio results in five orders of magnitude increase of conductivity and a sharp increase of grain volume fraction. The comparison of the absorption spectra obtained by DC and AC methods showed that they are similar for silicon films with the predominantly amorphous structure and films with high grain volume fraction. However we found a dramatic discrepancy between the absorption spectra obtained by DC and AC constant photocurrent methods in silicon films deposited in the regime of the structure transition from amorphous to nanocrystalline state. AC constant photocurrent method gives higher absorption coefficient than DC constant photocurrent method in the photon energy range of 1.2–1.7 eV. This result indicates the possibility of crystalline grains contribution to absorption spectra measured by AC constant photocurrent method in silicon films with intermediate crystalline grain volume fraction. 相似文献
4.
AbstractZinc oxide nanostructures have been grown by electrochemical deposition on porous silicon–silicon substrate. The photoelectric and sensory properties of the obtained ZnO–porous silicon nanosystems were investigated in both DC and AC regimes. The obtained structures were characterized by photosensitivity in the 400–1100?nm wavelength range and by high sensitivity to moisture. Increase of relative humidity resulted in significant decrease of the electrical resistance and increase of the capacitance of the hybrid structures. To estimate the sensory properties of the ZnO–porous silicon nanostructures their adsorption sensitivity and dynamic characteristics were analyzed. Discovered features of the charge transport processes broaden the prospects of the semiconductor nanosystems application in gas sensors and photodetectors. 相似文献
5.
E. López-Luna M.A. Vidal A.G. Rodríguez H. Navarro-Contreras Y. Kudriavtsev R. Asomoza A. Villegas 《Journal of Non》2009,355(16-17):976-981
Low energy shifted photoluminescence from isolated erbium ions incorporated into a-SiGe:H thin films is reported. The Er3+ are thermally diffused from an a-SiGe:H:Er layer to a-SiGe:H subsequently grown, both by magnetron sputtering. The photoluminescence observed is associated with transitions produced by erbium emission centers activated by the oxidation in a 1 h annealing process in air at 250 °C. The resultant Er3+ concentration observed from the a-SiGe:H is affected by the hydrogen concentration already present in the layer. It is observed that at higher hydrogen concentrations in a-SiGe:H the resultant amount of diffused Er3+ decreases. As a consequence of the resultant smaller density of erbium ions, the probability of having isolated Er3+ ions increases. In this last regime, a correlation with stronger photoluminescence is observed. 相似文献
6.
We propose microcrystalline silicon–germanium (μc-SiGe) as a bottom cell material of triple-junction solar cells in order to improve the conversion efficiency of thin film solar cells. The μc-SiGe thin films were prepared by the chemical transport process using Si and Ge targets exposed to hydrogen radicals. We successfully produced highly photosensitive μc-SiGe films with relatively low Ge composition by increasing the gas pressure, and observed the photovoltaic effect in pin solar cell structures. However, it was difficult to produce μc-SiGe films with higher Ge composition. We found that a small amount of argon introduction into the chemical transport process enables us to increase Ge composition at the high pressure. Moreover, the argon introduction seems effective to maintain the electrical properties in relatively high Ge composition. The results suggest that the μc-SiGe thin films prepared by the chemical transport process are one of the candidates for new photovoltaic materials. 相似文献
7.
We report the results of a systematic study of the thermal and optical properties of a new family of tellurite glasses, TeO2–ZnO–BaO (TZBa), as a function of the barium oxide mole fraction and compare them with those of TeO2–ZnO–Na2O (TZN). The characteristic temperatures of this new glass family (glass transition, Tg, crystallization, Tx, and melting, Tm) increase significantly with BaO content and the glasses are more thermally stable (greater ΔT = Tx ? Tg) than TZN glasses. Relative to these, Raman gain coefficient of the TZBa glasses also increases by approximately 40% as well as the Raman shift from ~ 680 cm? 1 to ~ 770 cm? 1. The latter shift is due to the modification of the glass with the creation of non-bridging oxygen ions in the glass network. Raman spectroscopy allows us to monitor the changes in the glass network resulting from the introduction of BaO. 相似文献
8.
Shouvik Datta J. David Cohen Yueqin Xu A.H. Mahan Howard M. Branz 《Journal of Non》2008,354(19-25):2126-2130
We report the observation of light induced electron capture in oxygen contaminated (~5 × 1020 cm?3) hydrogenated amorphous silicon–germanium alloys grown by hot-wire chemical vapor deposition (HWCVD). By examining the time evolution of dark capacitance after 1.2 eV photoexcitation, we are able to estimate the free energy barrier (?0.8 eV) for the release of electrons into the conduction band. Such a large thermal barrier, for a defect whose optical threshold is centered (~1.35 eV) so close to the band-gap (1.5 eV), indicates significant configurational relaxation once the oxygen impurity state is occupied with photoexcited electrons. 相似文献
9.
Naohisa Takesue Yusuke Shimizu Takeshi Yano Masashi Hara Shigeru Kuramoto 《Journal of Crystal Growth》2009,311(12):3319-3324
Single crystals of β-type Ti alloy system Ti–Nb–Ta–Zr–O have been grown successfully in an Ar gas flow by a floating zone method. The growth orientations were determined approximately by using seed crystals with the desired orientations. The various growth conditions were realized by choosing the gas purity, the gas flow rate, and the growth rate as variables. Composition analysis of the grown crystals was done to check any variation from the values of the raw material along with the bulk homogeneity, followed by measurements of the lattice parameter and the hardness, which provides the following results: (1) the composition of oxygen varies with respect to the flow rate, or is increased as the purity is degraded, (2) the lattice parameter is increased with increasing composition of oxygen, (3) which is also the case with the hardness. Measurements of Young's moduli were performed to investigate the elastic properties. The results indicate that the crystals exhibit the anisotropy which was expected previously. The elastic constants were estimated from the moduli, giving the ideal stress 1.7–1.9 GPa which is on a level with the real strength. Additionally, the tensile stress–strain curve for the crystallographic direction 〈1 1 0〉 exhibited nonlinear elasticity and hysteresis. 相似文献
10.
Porous carbon xerogels can be obtained by convective drying of resorcinol (R)–formaldehyde (F) hydrogels, followed by pyrolysis. Drying conditions have to be carefully controlled when crack-free monoliths with well-defined shape and size are required. The knowledge of the mechanical properties of the RF xerogels and their evolution with water content is essential to model their thermo-hygro-mechanical behavior during convective drying and avoid mechanical stresses leading to deformation and cracking of the sample. The shrinkage behavior and the mechanical properties of RF xerogels obtained with R/C ratio ranging from 300 to 1500 were investigated. R/C greatly influences the shrinkage and mechanical properties of the wet gel, on the one hand, and the mechanical and textural properties of the dried gel, on the other hand. The smaller the R/C, the higher the shrinkage, the stiffening, and the viscoelastic character of the xerogels. Water content has an influence on both the stiffness of the gels and the viscoelastic response. Generally, samples lose their mechanical viscous character and become more rigid when they are dried. Finally, mercury porosimetry measurements showed that the gels exhibit a marked lowering of their stiffness upon compression, interpreted as a result of the heterogeneity of the microstructure. 相似文献
11.
D. Gracin A. Gajović K. Juraić M. Čeh Z. Remeš A. Poruba M. Vaněček 《Journal of Non》2008,354(19-25):2286-2290
A representative set of amorphous–nano-crystalline Si thin films was deposited by radio-frequency plasma enhanced chemical vapor deposition using silane highly diluted by hydrogen. By Raman spectroscopy it was found that the variation of silane to hydrogen ratio resulted in films with crystal fraction between 0 and 55 vol.% and individual crystal sizes between 2 and 20 nm with bi-modal, broad size distribution. High resolution transmission microscopy, done on certain number of samples, confirmed the nano-meter size of crystallites and bi-modal size distribution. The optical properties measured by Fourier transform photocurrent spectroscopy and photo thermal deflection spectroscopy correspond to the material with structure between amorphous and crystalline. The spectral distribution of relative quantum efficiency of photovoltaic solar cell made from this material shows ‘blue shift’ with increase of crystal to amorphous fraction. This result is discussed as a possible consequence of quantum effects accompanied with actual size and size distribution of crystals. 相似文献
12.
The results of investigations of electrical conductivity and the structure of NbN–TiN thin films in a different NbN/TiN molar ratio are presented in this work. Sol–gel derived xNb2O5?(100?x)TiO2 coatings (where x = 100, 90, 80, 70, 60, 50, 40, 0 mol%) were nitrided at 1200 °C to obtain NbN–TiN films. The structural transformations occurring in the films as a result of ammonolysis were studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The electrical conductivity was measured with a conventional four-terminal method in the temperature range of 5–280 K. The NbN–TiN samples exhibited a negative temperature coefficient of resistivity. The positive temperature coefficient of resistivity was observed only for the x = 0 sample. The results of conductivity versus temperature may be described on the grounds of a model proposed for a weakly disordered system. The film thickness effect on the superconducting properties was studied for x = 80 and x = 100 samples. The superconducting transition was not observed in all samples, the exception was x = 80 sample, 1050 nm in thickness. It is not clear, why all x = 100 samples do not exhibit superconducting transition in resistivity measurements. It seems to be possible, that the Josephson junction formation between NbN grains could be blocked by non-superconducting phases present in these samples. 相似文献
13.
Ján Kalužný Marian Kubliha Vladimír Labaš Torkia Djouama Marcel Poulain 《Journal of Non》2009,355(37-42):2003-2005
Direct electrical conductivity and dependencies of complex electrical modulus vs. temperature and frequency have been measured on glasses from the MnF2–ZnF2–NaPO3 system. These glasses are sensitive to atmospheric humidity and as a consequence, the electrical conductivity increases up to temperature of 50 °C. A hydrated layer is created by the effect of water and leads to the significant increase of the electrical conductivity in the case of 0MnF2–20ZnF2–80NaPO3 glass. This behavior is governed by Arrhenius relation where the values of activation energy are increasing and values of the electrical conductivity are decreasing with the amount of MnF2. Dielectric measurements show that a heterogeneous phase is formed in the bulk of glasses. This may be seen when plotting complex electrical modulus in the complex plane. The records made by the light microscope confirmed the occurrence of the other phase in the bulk of glasses. 相似文献
14.
Fang Xia S. Baccaro Wei Wang L. Pilloni Xianghua Zhang Huidan Zeng Guorong Chen 《Journal of Non》2008,354(12-13):1137-1141
Nanophase separation in the bulk Ge–As–Se chalcogenide glasses was observed by SEM and supported by XRD and IR measurements. Effects of nanophase separation on glass transition temperature (Tg), microhardness (Hv), optical band gap (Eopt) and thermal expansion coefficient (α) were investigated in terms of glass rigidity transitions. According to the correlations between the properties and average coordination number Z, it is established that nanophase separation becomes more intensive when Z is larger than 2.64. 相似文献
15.
Adam A. Bahishti M.A. Majeed Khan B.S. Patel F.S. Al-Hazmi M. Zulfequar 《Journal of Non》2009,355(45-47):2314-2317
The crystallization parameters such as glass transition temperature (Tg), onset crystallization temperature (Tc), peak crystallization temperature (Tp) and enthalpy released (ΔHC) of the bulk Se–Te chalcogenide glass has been studied by using Differential Scanning Calorimeter (DSC), under non-isothermal condition at a heating rate of 20 K/min. The values of Tg, Tc, Tp and ΔHC with and without laser irradiation for different exposure time have been studied. The optical absorption of pristine and laser irradiated thermally evaporated Se–Te films has been measured. The films shows indirect allowed interband transition that is influenced by the laser irradiation. The optical energy gap has been found to decrease from 1.61 to 1.38 eV with increasing irradiation time from 5 to 20 min. The results have been analyzed on the basis of laser irradiation-induced defects in the film. 相似文献
16.
Vladimir Labaš Marcel Poulain Marian Kubliha Stanislav Minárik Salem Chaguetmi Jozef Psota Viera Trnovcová 《Journal of Non》2011,357(11-13):2371-2374
Glass samples have been prepared in the NaPO3–KHSO4 binary system with the classical melting, casting and annealing steps. Electrical and dielectrical properties of glass samples were studied. Measurements of DC and AC conductivity and complex electrical permittivity of xNaPO3–(100 ? x)KHSO4 glass system were carried out at temperatures ranging from room temperature to temperature located 15 °C below glass transition temperature Tg. Results showed that changes of NaPO3 concentration considerably affect values of observed parameters. DC conductivity of glass increases as NaPO3 concentration grows until concentration x = 60. However, beyond this value a sharp decrease of DC conductivity was observed. In addition relaxation times showed abrupt changes at concentration x = 60, corresponding to the lowest relaxation times at the temperature 90 °C. 相似文献
17.
F. Amaral C.P.L. Rubinger F. Henry L.C. Costa M.A. Valente A. Barros-Timmons 《Journal of Non》2008,354(47-51):5321-5322
The control of the dielectric properties of polymer composites is a relevant tool to synthesize a material to a specific industrial application. Polystyrene (PS) is a suitable host because it is readily available, and is easy to cast into desired shapes, maintaining the mechanical integrity of the matrix. CaCu3Ti4O12 (CCTO) is a well-known high dielectric constant material, very useful for capacitors and memory devices. In this work, we studied the dielectric properties of the composite PS–CCTO, in the frequency range 10 Hz to 100 kHz, for CaCu3Ti4O12 grains concentrations up to 64% by volume. Different mixture laws were used to fit the data: Hanai, Wiener, Maxwell–Wagner, Kraszewsky, Looyenga and Generalized Looyenga. The last one presents the best results. The calculated exponent of this law was then correlated with the shape particles observed by scanning electron microscopy. Finally, using Generalized Looyenga law, we can carefully select the adequate CCTO concentration in order to tailor the desired behavior, producing interesting composites for potential applications. 相似文献
18.
Hot-wire chemical vapor deposition is employed for the deposition of amorphous and microcrystalline silicon layers at substrate temperature kept below 100 °C with the aid of active cooling of the substrate holder. The hydrogen dilution is varied in order to investigate films at the amorphous-to-microcrystalline transition. While the amorphous layers can be produced with a reasonably low defect density as deduced from subgap optical absorption spectra and a good photosensitivity, the microcrystalline layers are of a lesser quality, most probably due to a decrease of crystallinity during the film growth. In the amorphous growth regime, the Urbach energy values decrease with increasing hydrogen dilution, reaching a minimum of 67 meV just before the microcrystalline threshold. By varying the total gas pressure, the growth rate of the films is changed. The lowest deposition rate of this study (0.16 nm/s) produced the amorphous sample with the highest photoresponse (1 × 106). 相似文献
19.
Nanocrystalline 1%, 2% and 4% Cobalt-doped TiO2 were prepared by sol–gel technique, followed by freeze-drying treatment at ?30 °C temperature for 12 h. The obtained gels were thermally treated at 200, 400, 600 and 800 °C. X-ray Powder Diffraction (XRD), Scanning Electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDAX) were used to study its structural properties. The XRD pattern shows the coexistence of anatase phase and minor brookite phase. UV–vis Spectroscopy and Photoluminescence (PL) were used to study its optical properties. Optical band gap was calculated with the incorporation of different concentrations of cobalt. UV–visible spectroscopy shows variation in band gap for the sample treated at different temperatures for same concentration. All Cobalt doped TiO2 nanostructures show an appearance of Red shift relative to the bulk TiO2. The determination of magnetic properties was also carried out by Gouy balance method. 相似文献
20.
Sandip P. Harimkar Sameer R. Paital Ashish Singh Robert Aalund Narendra B. Dahotre 《Journal of Non》2009,355(43-44):2179-2182
Fabrication of Fe-based amorphous alloy using spark plasma sintering (SPS) process has been reported. Fully amorphous compacts with ~95% relative density were successfully sintered at temperature about 100 °C lower than glass transition temperature (Tg: 575 °C). Formation of crystalline Fe23(C, B)6 phases within near-fully dense (~99%) amorphous matrix is observed at sintering temperatures (>550 °C) close to glass transition temperature. Microstructure evolution in sintered compacts indicated that density, degree of crystallinity, and mechanical properties can be effectively controlled by optimizing SPS parameters. 相似文献