首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Silica gels prepared by copolymerizing tetraethylorthosilicate with 3-aminopropyltriethoxy-silane were modified using polymer derived from toluene diisocyanate and dried under ambient pressure. The successful preparation of silica aerogels depended on the effective control of shrinkage during drying. The resulting material, polymer-modified silica aerogel, was then characterized by thermogravimetric analysis and uniaxial compression tests. Results indicated that the apparent elastic modulus and compressive strength of the polymer-modified silica aerogels decreased with increasing amounts of incorporated polymer because of decreasing shrinkage and density, while the strains at the surface cracking point and the final failure point increased significantly during compression tests. The strength and modulus of the silica skeleton could be calculated from the apparent strength and modulus of the silica aerogels respectively. It was interestingly shown that the elastic modulus of the silica skeleton of the silica aerogels increased because of the incorporated polymers, while the polymers had no effects on the compressive strength of the silica skeleton. In addition, the relationships between the apparent elastic modulus or the apparent compressive strength of the polymer-modified silica aerogels and their shrinkage were quantitatively expressed.  相似文献   

2.
《Journal of Non》2006,352(50-51):5251-5256
The elastic moduli of mesoporous (fractal pore structure with a statistical pore size distribution with a maximum in the mesopore region) silica monoliths (silica aerogels) were measured in situ during calcination using the resonant beam technique. Above a temperature of approximately 573 K, a significant increase of the elastic moduli with increasing heat treatment temperature was observed, which was attributed to the rearrangement and completion of the network. Poisson’s ratio is close to zero up to this temperature and then increases to a positive value typical for isotropic bodies.  相似文献   

3.
Low-density monolithic silica and hexylene-bridged polysilsesquioxane aerogels were chemical vapor deposition (CVD) treated with hexamethyldisilazane or hexachlorodisilane silylating agents producing TMS (trimethylsilane) or Si layers on the aerogel. Reinforcing the weak aerogels by controlled deposition process improved their compressive strength and preserved their properties characteristic of low-density aerogels. When the silica and hexylene-bridged polysilsesquioxane aerogels were CVD treated with hexamethyldisilazane, the compressive modulus more than doubled in some cases. However, when treating hexylene-bridged aerogels with hexachlorodisilane the compressive modulus increased six fold. Not only did CVD treatment of the aerogels improve the compressive modulus, but the low densities, high surface areas, high porosities, and the transparency of the aerogels were not significantly affected.  相似文献   

4.
The silica aerogels were synthesized by sol–gel method via ambient pressure drying. Tetraethyl orthosilicate (TEOS) was used as a main silica source, methyltriethoxysilane (MTES) as a co-precursor silica source and (3-Glycidoxypropyl)trimethoxysilane (GPTMS) as a silane coupling agent. The silica aerogels obtained were further undergoing cross-linking epoxy from GPTMS with amine from diethylenetriamine (DETA) which played a dual role of base catalyst and reagent. The cumulative volumes for open pores of the cross-linked aerogels were evaluated to be 1.4 cm3/g. The Young's modulus and maximum compression strength were 25.4 MPa and 6.17 MPa, respectively. The addition of MTES accelerated the solvent exchange of alcohol within the pores with n-hexane and reduced the shrinkage of aerogels network during the ambient pressure drying. The formation of organic network enhanced the strength of the cross-linked aerogels to prevent the crack generation and the subsequent failure of the monolith during the ambient drying, therefore, protected the nanoporous structure of aerogels.  相似文献   

5.
《Journal of Non》2005,351(40-42):3195-3203
The glass structure and elastic properties of two bioglasses having bulk compositions near Na2CaSi2O6 (45S5.2) and Na2CaSi3O8 (55S4.1) were studied using both Raman and Brillouin scattering techniques. The annealed 45S5.2 glass has more Q2 and Q0 but less Q3 species than 55S4.1 glass due to lower (Si4+ + P5+)/(Na+ + Ca2+) ratio. Brillouin scattering measurements of the as-annealed glasses indicated that 45S5.2 glass is ca. 2% and 9% higher in Young’s and bulk moduli than 55S4.1 glass due to more modifiers in the 45S5.2 glass. Nearly full crystallization of 45S5.2 glass was observed after treating it at 715 °C for ca. 30 min. Devitrification of the 45S5.2 glass caused an increase in the elastic moduli up to ca. 30% (fully crystallized) but a negligible change in density. This 45S5.2-derived crystalline phase displayed at least 17 Raman bands, and has the average elastic moduli of 72.4 (bulk), 41.6 (shear), and 104.7 (Young’s) GPa. The comparable elastic moduli with hydroxyapatite and the ability for developing a HCA layer in simulated body fluid indicate that the 45S5.2-derived phase may be better for using as a substitute of bone than its parent glass.  相似文献   

6.
The elastic properties of beryllium-lantanum hexaaluminate, BeLaAl11O19 (sp. gr. P63/mmc), a new crystal from the family of hexagonal aluminates, have been studied. The velocities of elastic-wave propagation in the crystals are measured by a new acoustooptic interference method. The values of all the independent components of elastic-constant tensor are determined and used to calculate a number of dynamic parameters of the crystal such as the Young’s and shear moduli, the modulus of volume elasticity, Poisson’s ratio as well as the Debye temperature and specific heat. The data obtained are compared with the same parameters for the well-known magnesium-lantanum hexaaluminate MgLaAl11O19 laser crystals. It is shown that the dynamic properties of the BeLaAl11O19 crystal are close to those of MgLaAl11O19 and are a promising matrix for designing new laser media.  相似文献   

7.
8.
Y. Bottinga  A. Sipp  P. Richet 《Journal of Non》2001,290(2-3):129-144
Time-dependent variations of the viscosity of silicate melts, associated with sudden changes of temperature or uniaxial compressive stress, have been measured. The melt compositions were MgCaSi2O6, CaAl2Si2O8 and NaAlSi3O8. The steady-state viscosity values were between 1 and 1000 TPa s. Applied stresses were always less than 200 MPa, and the observed stabilized melt flow was Newtonian. The characteristic times of the viscosity variation with time, due to adjustments of the internal structure of the melts after a thermal perturbation, depend on temperature and composition. The characteristic times for isothermal stress perturbations are about 10 times shorter than for thermal perturbations.  相似文献   

9.
Ryan Maloney 《Journal of Non》2011,357(10):2059-2062
Silica aerogels were prepared through an acid-base process and surface modified with chlorotrimethylsilane. This novel application of a common non-crosslinking surface modification to improve mechanical properties allows the treated aerogels to deform plastically to compressive strains greater than 80% without macroscopic damage. This improvement in mechanical properties remains after heating in air at 500 °C for 3 h, as do residual organic groups. Heating at 700 °C for 1 h removes all organics and the aerogel behaves similar to the unmodified control. The treated aerogels also exhibit a greater resistance to sintering. Nitrogen adsorption measurements show a reduction in the number of micropores with surface modification. It is concluded that the organic monolayer increases the ductility of the silica network by filling and strengthening surface micropores that serve as crack initiators, and that these organics remain effective at elevated temperatures.  相似文献   

10.
采用超临界干燥法制备了碳气凝胶( Carbon Aerogels,CA),然后通过简单的化学还原法制备CA/SnSb复合负极材料。采用XRD和SEM等手段对材料的结构及形貌进行了表征,利用恒电流充放电测试了材料的循环性能。研究结果表明,碳气凝胶表现出纳米多孔三维网络结构,当对SnSb合金采用碳气凝胶修饰后,纳米SnSb颗粒包含在碳气凝胶的网络骨架中,呈现出碳气凝胶和纳米SnSb合金颗粒相互交错分布的结构,极大改善了复合材料的团聚性。 CA/SnSb复合负极材料首次放电容量高达1120.2 mAh·g-1,循环50次后放电容量仍达到557.3 mAh· g-1,远高于未经碳气凝胶修饰的SnSb合金。循环性能的改善主要归因于碳气凝胶的引入,不仅极大的改善了复合材料的团聚现象,而且可以缓冲SnSb合金在充放电过程中体积变化。  相似文献   

11.
A 3-D finite volume numerical model based on the porous secondary nanoparticle random aggregate structure was developed to predict the total thermal conductivity of silica aerogels. An improved 3-D diffusion-limited cluster–cluster aggregation (DLCA) method was used to generate an approximately real silica aerogel structure. The model includes the effects of the random and irregular nanoparticle aggregate structure for silica aerogels, solid–gas coupling, combined conduction and radiation, nanoparticle and pore sizes, secondary nanoparticle porosity and contact length between adjacent nanoparticles. The results show that the contact length and porosity of the secondary aerogel nanoparticle significantly affect the aerogel microstructure for a give density and, thus, greatly affect the total thermal conductivity of silica aerogels. The present model is fully validated by experimental results and is much better than the model based on a periodic cubic array of full density primary nanoparticles, especially for higher densities. The minimum total thermal conductivity for various silica aerogel microstructures can be well predicted by the present model for various temperatures, pressures and densities.  相似文献   

12.
《Journal of Non》2005,351(8-9):650-655
Aluminate glasses containing 45–71.5 mol% alumina, 10–40 mol% rare earth oxide, and 0–30 mol% silica were synthesized from precursor oxides. The glass transition and crystallization temperatures were determined by differential scanning calorimetry; the structural and mechanical properties were investigated by Raman and Brillouin spectroscopy. The range of the supercooled liquid region varies from ∼40 °C to 200 °C, providing a useful working range for compositions with 5–30 mol% silica. Raman scattering showed the presence of isolated SiO4 species that strengthen the network-forming structure, enhance glass formation, and stabilize the glass even when they are present at fairly low concentrations. Sound velocities were measured by Brillouin scattering. From these and other values, various elastic moduli were calculated. The moduli increased with both aluminum and rare earth content, as did the hardness of the glasses. Young’s modulus was in the range 118–169 GPa, 60–130% larger than that for pure silica glass.  相似文献   

13.
14.
The experimental results on the microstructural and physical properties of the ambient pressure dried hydrophobic silica aerogels with various solvent mixtures have been reported. The aerogels were prepared with sodium silicate precursor, ammonium hydroxide catalyst, trimethylchlorosilane (TMCS) silylating agent, solvent mixture of methanol-isopropanol (MeOH/IPA) and various aprotic solvent mixtures namely, hexane and benzene (HB), hexane and toluene (HT), hexane and xylene (HX), heptane and benzene (HpB), heptane and toluene (HpT), heptane and xylene (HpX). The physical properties of the aerogels such as % of volume shrinkage, density, % of optical transmission, surface area, % of porosity, pore volume, thermal conductivity and heat capacities of the aerogels were studied. The hydrophobicity of the aerogels was studied by contact angle measurements. The HX and HpX aerogels have been found to be more hydrophobic (contact angle, θ > 155°) than the other aerogels. It has been observed that the % of weight increase is highest (1%) for the HT aerogels and lowest (0.25%) for HpX aerogels by keeping them at 70% humidity for 350 h. Further, the aerogels have been characterized by pore size distribution (PSD), Fourier transform infra red spectroscopy (FTIR) and thermogravimetric and differential thermal (TG-DGA) analysis and transmission electron microscopy (TEM) techniques. The results have been discussed by taking into account the surface tension, vapor pressure, molecular weight and chain length of the solvents. Low density (0.051 g/cc), hydrophobic (165°), transparent (85%), low thermal conductive (0.059 W/m K), low heat capacity (180 kJ/m3 K) and highly porous (97.38%) silica aerogels were obtained with HpX solvent mixture.  相似文献   

15.
The overall deformation behaviour between room temperature and 1000 K has been investigated by bending and uniaxial compression at small strains ≦ 0.1%. Ductile-to-brittle transition temperature was found at 44% of the melting point. Dislocations are generated mainly at surface irregularities. Whereas screw dislocations predominate at the beginning 30° and 60° segments become more important after cross slip and interaction of different slip systems.  相似文献   

16.
采用正硅酸乙酯(TEOS)为硅原,以硅烷改性的埃洛石纳米管(HNTs)为增强相,利用CO2超临界干燥技术制备具有优良力学和隔热性能的HNTs/SiO2复合气凝胶.利用傅立叶红外光谱、扫描电镜、比表面积与孔径分析仪、万能试验机和导热率测量仪等手段对HNTs改性后的表面状态、HNTs/SiO2复合气凝胶的微观形貌、孔结构、力学和导热性能进行了测试分析.结果表明:改性后的HNTs均匀分散到二氧化硅气凝胶基体中,并与SiO2纳米颗粒实现良好的结合,HNTs/SiO2复合气凝胶呈三维网络结构,当HNTs含量为15wt;时,平均孔径为10.47 nm;随着HNTs含量的增加,复合气凝胶的力学性能不断增强,同时其导热系数也不断增大,当HNTs含量为15wt;时,HNTs/SiO2复合气凝胶的抗压强度为0.85 MPa,导热系数为0.024 W/mK.  相似文献   

17.
Possible elastic response of anisotropic materials to uniaxial stretching is discussed. For cubic symmetry regions of different auxetic behavior are indicated and various solid structures located on elastic moduli maps. The elastic properties of two model molecular systems, the Gaussian-core model and soft-sphere solids are investigated. A generic mechanism leading to auxetic behavior in cubic materials is suggested.  相似文献   

18.
Mechanical strength of silica aerogels   总被引:4,自引:0,他引:4  
Pure silica aerogels are obtained by hypercritical evacuation of the solvent. The strength is measured by the three-point flexural test on monolithic parallelepipedic samples and by a diametral compression test on cylindrical samples. The stress-strain curve shows a perfect elastic behaviour and the “conchoidal” fracture morphology indicates that the material is as brittle as a conventional glass. The mechanical properties are followed as a function of the bulk density. Aerogels with the highest porosity (P > 95%) reveal a maximum flexural strength lower than 10−2 MPa. A model is proposed to account for the obtained mechanical properties.  相似文献   

19.
TbF3 (sp. gr. Pnma) crystals up to 40 mm in diameter have been grown from melt by a Bridgman technique. The anisotropy of their mechanical properties is studied for the first time. the technical elasticity constants are calculated, and room-temperature values of Vickers microhardness for the (010) and (100) planes are measured. The shape of indentation impressions is found to correlate with Young’s modulus anisotropy for TbF3 crystals.  相似文献   

20.
Isostatic compression of silica aerogels is known to allow densification of these highly porous materials. However, at the onset of compression, hydrophobic and consequently slightly reacting aerogels, exhibit a decrease in bulk modulus. This unusual behavior is associated with damage occurring at low pressures which recovers with further density increase. Damage development and healing are analyzed measuring elastic modulus and, for the first time, internal friction as a function of compression. It is proposed that the origin of damage and healing could be associated with the rupture of tenuous links between clusters of dense silica particles at low density levels, and with the creation of new links between the resulting arms and reacting species that are revealed at cluster interface under higher pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号