首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
In order to crystallize a large quantity of the lithium?mica in glass?ceramics, 5.1 mass% MgF2 was added to the starting materials of the parent glasses having chemical compositions of Li(1+x)Mg3AlSi3(1+x)O10+6.5xF2 (x = 0.5 and 1.0). Transparent glass?ceramics, in which a large quantity of lithium?mica with particle size of <50 nm was separated, could be prepared from the MgF2-added parent glass with x = 0.5. While the parent glass, which had a binodal phase separation structure, did not exhibit electrical conductivity, the transparent glass–ceramic was given conductivity by the formation of an interlocking structure of mica. As the separated mica formed a tighter interlocking structure, the conductivity increased and reached a value of 2.0 × 10?3 S/cm at 600 °C. The MgF2-added parent glass with x = 1.0 was not transparent because of coarse spinodal phase separation. The conductivity was 4.3 × 10?4 S/cm at 600 °C but was significantly decreased by the separation of mica.  相似文献   

2.
Hong Li  Jinshu Cheng  Liying Tang 《Journal of Non》2008,354(12-13):1418-1423
Extensive corrosion experiments on electrocast alumina–zirconia–silica (AZS) refractories by molten CaO–Al2O3–SiO2 (CAS) and Na2O–CaO–SiO2 (NCS) glasses were carried out at various temperatures under static condition. The features and mechanism of the corrosion were compared and analyzed. The changes of microstructure and phase composition of refractories in the course of the melt corrosion were also studied. X-ray diffraction (XRD), scanning electron microscope (SEM) and chemical analysis were used to characterize the corroded refractory materials and reacted melts. The reasons of alumina–zirconia–silica bricks corroded are the meltdown of their own composition, penetration or permeation of alkali oxide in the glass melt and scouring of the glass melt. The results show that the refractories resistance against corrosion of the oxides like Na2O, K2O or CaO is weak, and that the corrosion mechanism of NCS/AZS is different from that of CAS/AZS. In a static condition, CaO–Al2O3–SiO2 melts corroded alumina–zirconia–silica brick more severely than Na2O–CaO–SiO2. The result provides useful reference to a prospective selection of refractory materials in glass and glass–ceramics manufacture.  相似文献   

3.
The nucleation behaviors of glass–ceramics with different Ca–mica (Ca0.5Mg3AlSi3O10F2)/fluorapatite ratios were investigated. By using differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscope with an energy dispersive spectrometer (SEM/EDS), the effect of CaO and P2O5 addition on the nucleation behaviors was studied. Results showed that the addition of CaO and P2O5 promoted nucleation process and led to the formation of different nucleation phases. After further heat treatment, Ca5(PO4)3F crystals were of needle-like morphology, instead of particle-like reported in previous studies. This can be attributed to the one-dimensional rapid growth of fluorapatite along the c-axis. The values of the Avrami parameter, n, and the dimensionality of crystal growth, m, are found to be 2 and 1, respectively, which indicated that the bulk nucleation is the dominant mechanism in crystallization, and one-dimensional growth of fluorapatite is preferred. Since needle-like fluorapatite crystals are of the same morphology to hydroxyapatites in human bones, the glass–ceramics thus prepared show excellent bioactivity in vivo.  相似文献   

4.
Highly lithium ion conducting glasses and glass–ceramics were prepared by a mechanical milling technique in the Li2S-based sulfide and oxysulfide systems. The Li2S–P2S5 glass–ceramics showed ionic conductivity as high as 3.2 × 10?3 S cm?1 at room temperature. All-solid-state batteries using these sulfide-based materials as a solid electrolyte showed excellent charge–discharge performance with high capacity and high cycleability. The cells with the combination of the SnS–P2S5 glassy electrode and the Li2S–P2S5 glass–ceramic electrolyte worked as a secondary battery, which was a first step of glassy monolithic cells with a common glass network.  相似文献   

5.
6.
Piezoelectric coefficients d33 as well as ultrasonic velocities and elastic coefficients of ZnF2–PbO–TeO2 glasses crystallized with different concentrations of TiO2 (0.5 to 2.0 wt.%) were measured. The contribution to the piezoelectric coefficients is attributed to presence of Pb5Ti3F19, PbTiO3 and PbTeO3 ferroelectric crystal phases. The piezoelectric coefficients show substantial sensitivity to presence of TiO2. The ultrasonic velocities and the related elastic coefficients in these glass ceramics as a functions of concentration of nucleating agent TiO2 exhibited minimal effect at 1.0 wt.%. This is ascribed to the larger presence of titanium ions in Ti3+ states which act as modifiers and finally de-polymerize glass ceramic network. The results have been further discussed quantitatively within a framework of different oxidation states of titanium ions and the nature of the crystal phases ingrained in the glass ceramic.  相似文献   

7.
A molecular dynamics simulation method was used to study the effects of the microstructure on the solidification process of different cooling rates in the MgO–Al2O3–SiO2 glass–ceramics with cordierite as the main crystalline phase. The reasons for changes in the microstructure during the solidification process were analysed by the radial distribution function curve, the bond angular distribution, the coordination number and the volume changes. The results showed that the cooling rate greatly affected the crystallisation process and the glass transition process. When the cooling rate was too fast, the atoms could not undergo a massive displacement before they were “frozen”, and the ability of atoms to achieve an equilibrium position was limited. Some amorphous phases were formed as a result of the disorder of the atomic arrangement, then some crystalline phase precipitated from the vitreous, and a glass–ceramic material was eventually formed.  相似文献   

8.
Glasses in the (Er2O3)x·(B2O3)(60 ? x)·(ZnO)40 system (0  x  15 mol%) have been prepared by the melt quenching technique. X-ray diffraction, FTIR spectroscopy, UV-VIS spectroscopy and ab initio calculations studies have been employed to study the role of Er2O3 content on the structure of the investigated glass system.X-ray diffraction and infrared spectra of the glasses reveal that the B–O–B bonds may be broken with the creation of new non-bridging oxygen ions facilitating the formation of Er–O–B linkages. The excess of oxygen can be accommodated in the network by the conversion of sp2 planar [BO3] units to the more stable sp3 [BO4] tetrahedral structural units. The linkages of the [BO4] structural units can polymerize in [B3O9]? 9 cyclic trimeric ions which will produce the ErBO3 crystalline phase. An increase of the efficiency corresponding to the 4I15/2 state to 4I11/2 state (4f–4f) transitions of Er+ 3 ions was observed for the erbium oxide richest glasses.Ab initio calculations on the structure of the matrix network show the thermodynamic instability of the [BO4], [ZnO4] and [Zn4O] structural units. Formation of three-coordination oxygens was necessary to compensate shortage of oxygens from zinc ions.  相似文献   

9.
In the Tb3+–Yb3+ codoped glass ceramics with SrF2 nanocrystals precipitated, the energy transfer mechanism from Tb3+ to Yb3+ was investigated. The excitation power dependence of emission intensity study showed that the quantum cutting occurs during the energy transfer from Tb3+ to Yb3+ with the excitation of Tb3+ high energy level. However, the one-photon process is the main reason that is responsible for the Yb3+ infrared emission. The external quantum yields of Tb3+ and Yb3+ were evaluated by using an integrating sphere measurement system with the excitation of 377 and 488 nm lasers, which are much lower than the expected quantum efficiencies calculated from Tb3+ lifetimes. The external quantum yields in the glass ceramics and as-made glasses were also compared.  相似文献   

10.
Porous phosphate-based glass ceramics prepared by the sol–gel method were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential thermal analysis (DSC). The 48CaO–45P2O5–2ZnO–5Na2O glassy system can remain fully amorphous up to 550 °C. After heat treated at 650 °C, the obtained porous bodies consisted of dense struts and macropores where β-Ca2P2O7 and Na2CaP2O7 phases crystallized from the glass matrix. When treated at 750 °C, Ca4P6O19 and NaZn(PO3)3 precipitated homogeneously as new phases among the residual glass matrix. The material was assessed by soaking samples in phosphate-based buffer solution (PBS) solution to determine the solubility and observe apatite formation.  相似文献   

11.
Chalcohalide glass-ceramics based on GeS2–Ga2S3–CsCl pseudo-ternary system were prepared by heat treatment method. X-ray diffraction and scanning electron microscope studies confirmed the formations of Ga2S3 and GeS2 phase grains with sizes of 2–5 and 80 nm, respectively. Z-scan technology was employed to investigate the third-order nonlinear optical characteristics of both precursor glass and its glass ceramics at 800 nm. The results show that nonlinear refractive index n2 as well as nonlinear absorption coefficient β increase after heat treatment, which is due to quantum effects, and the largest n2 of the glass ceramics is 4.3 × 10? 11 esu which is 4 times larger than that of the host.  相似文献   

12.
The main aim of the study presented in this paper is the investigation of the structure of (As2S3)100?x(SbSI)x and (As2Se3)100?x(SbSI)x (0  ×  40) glasses by Raman spectroscopy and X-ray methods, also the nature of the crystalline inclusions which arise up in their matrix at heat treatment. We have found that in conditions of continuous heating in the interval “glassforming temperature–crystallization temperature” a crystallization with predominant mechanism of stable phase SbSI separation is taking place. The formation mechanism of crystalline inclusions of antimony sulphoiodide in glass matrix is discussed in the light of our results. It was established that all investigated glasses have a nano-heterogeneous structure.  相似文献   

13.
S. Rada  P. Pascuta  M. Rada  E. Culea 《Journal of Non》2011,357(19-20):3405-3409
Glasses of the system xSm2O3?(100-x)[6TeO2? 4V2O5] where 0  x  50 mol% were prepared and investigated. IR and UV–VIS spectra show that with increase x, the network continuity breaks down with the formation of the larger numbers of non-bridging oxygen. The accommodation of the network with the excess of oxygen ions is possible by the depolymerization of the vanadate network in shorter chains, especially ortho- and pyrovanadate structural units. In order to improve the local orders and to develop crystalline phases the glass samples were kept at 275° C for 7 h. Some structural changes were observed and new crystalline phases, namely Te2V2O9 and SmVO4 crystalline phases appeared in the structure of the samples. Our UV–VIS spectroscopic data show the conversion of the Sm+ 3 to Sm+ 2 species in same time with the oxidation of V+ 3, + 4 to V+ 5 ions.  相似文献   

14.
A novel Eu2+ activated 60SiO2–40BaO (mol%) glass ceramics phosphor was prepared and the optical properties were investigated. X-ray diffraction (XRD) and Raman spectra confirmed the formation of Ba2Si3O8 nano-crystals in the glass matrix. The Eu2+ activated glass ceramics exhibited broad emission band centered at 518 nm due to the 4f65d1→4f7 transition of Eu2+. Compared with the glass, the emission intensity of Eu2+ activated glass ceramics was much stronger, and the peak wavelength shifted toward shorter wavelength. The photoluminescence excitation (PLE) spectra of the glass ceramics showed an overlap with the main emission region of an ultraviolet light-emitting diode (UV-LED). According to the photoluminescence (PL) spectra, the CIE chromaticity coordinates of the Eu2+ activated glass and glass ceramics were calculated. The results indicated that the Eu2+ activated glass ceramics containing Ba2Si3O8 nano-crystals can be used as a potential green emitting phosphor under UV-LED excitation.  相似文献   

15.
Glass–ceramics with the composition 2Fe2O3.1ZnO.1MgO.96SiO2 [4ZnMgFe] and 2Fe2O3.2ZnO.3MgO.93SiO2 [7ZnMgFe] (mol%) were prepared using the sol–gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), electron diffraction (ED) and Mössbauer spectroscopy (MS) were used to investigate the glass–ceramics structure. The samples contain ferrite nanoparticles embedded in a glass matrix. However, zinc ferrite nanoparticles seems to be the preferential crystalline phase formed. The amount of ferrite particles depends on treatment temperature and sample composition. The Mössbauer spectroscopy measurements show that ferrite nanoparticles can exhibit a ferrimagnetic behaviour combined with superparamagnetism.  相似文献   

16.
Influence of single fluxes (10 wt.% B2O3), bi-component fluxes (4 wt.% B2O3 + 6 wt.% Na3AlF6), and complex fluxes (4 wt.% B2O3 + 4 wt.% Na3AlF6 + 2 wt.% Na2O) on the thermal kinetic parameters, microstructure, flexural strength and coefficient of thermal expansion (CTE) of Li2O–Al2O3–4SiO2 (LAS) glass–ceramics was investigated through differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscope (SEM). The results showed that complex fluxes could efficiently decrease transition temperature (Tg) and crystallization temperature (Tp), and accelerate the formation of needle-like β-spodumene crystals which benefit high flexural strength. The homogeneous LAS glass–ceramic (sample C3) which has a high strength of 132.4 MPa and low CTE (100–650 °C) of 2.74 × 10? 6/°C is obtained by doping of the initial LAS glass by complex fluxes of 4 wt.% B2O3, 4 wt.% Na3AlF6, and 2 wt.% Na2O, nucleating at 630 °C/120 min and then crystallized at 780 °C/120 min. It is worthy of further investigation as a bonder of diamond composite material due to its outstanding prosperities.  相似文献   

17.
18.
Prediction of bulk metallic glass (BMG) forming compositions has always been a challenge due to thermodynamic and kinetic constraints. In the present investigation, a parameter based on the enthalpy of chemical mixing (?Hchem) and the mismatch entropy (?Sσ/kB) has been used to correlate with glass forming ability in some Zr based BMGs. The new thermodynamic parameter, PHS = ?Hchem × ?Sσ/kB, is found to have strong correlation with glass forming ability in the configurational entropy (?Sconfig/R) range of 0.9–1.0. PHS has been calculated for compositions in Zr–Cu–Ag, Zr–Cu–Al, Zr–Cu–Ti and Zr–Cu–Ga ternary systems. It is observed that in all the systems studied, the best BMG composition (highest critical diameter (Zc) of glass formation) is the one that corresponds to the highest negative PHS value. Present approach using PHS could be road map to design new BMG forming compositions.  相似文献   

19.
Ferrimagnetic glass–ceramics were prepared in the systems Fe2O3 CoO MnO2 (S1), Fe2O3 NiO MoO3 (S2) and Fe2O3 CoO V2O5 (S3). Small amount of H3BO4 was added to make the melting process easier. The samples were characterized using DTA, XRD, TEM and EDX. Sequence of crystallization was studied by applying heat-treatment at 800 and 1000 °C for 4 h. CoFe2O4 with crystallite sizes of ≈ 14–20 nm was successfully prepared beside FeCoOBO3 and Co3BO5 in S1. NiMoO4, (FeNi2)O2(BO3) and NiO with crystallite size ≈ 56–79 nm were crystallized in S2. CoFe2O4, FeCoOBO3 and Co3BO5 with crystallite size ≈ 6–8 nm were crystallized in S3. Magnetic hysteresis cycles were analyzed with a maximum applied field of 20 kOe at room temperature. From the obtained hysteresis loops Ms records higher values for S1 and S3 and lower value for S2, while coercivity reach maximum for S2. The variable, magnetic, data range gives a wide range for different applications.  相似文献   

20.
Glasses in the system MgO/Al2O3/TiO2/ZrO2/SiO2 with and without the addition of As2O3 and Sb2O3 were thermally treated. Up to a temperature of 950 °C, this resulted in the formation of ZrTiO4, sapphirine and high quartz solid solution. Annealing at higher temperatures led to the formation of low quartz solid solutions, ZrTiO4 and sapphirine. This resulted in a continuous increase of density, hardness, fracture toughness and thermal expansivity. In the glass doped with As2O5 and Sb2O5 annealing temperatures >1000 °C resulted in the formation of cristobalite instead of quartz. Then the density, hardness and strength decreased again, while the fracture toughness (up to 2.8 MPa m1/2) and the thermal expansion coefficient increased strongly. In the dilatometric curves, a steep increase in expansion is observed in the temperature range from 100 to 200 °C, which is attributed to the transformation of low cristobalite to high cristobalite. The mean linear thermal expansion coefficient (25–200 °C) is 20 × 10?6 K?1 and the largest up to now reported in the literature for alkali-free silicate glass–ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号