首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Densities and kinematic viscosities have been measured for (1-butanol + 1,4-butanediol) over the temperature range from (298.15 to 318.15) K. The speeds of sound within the temperature range from (293.15 to 318.15) K have been measured as well. Using these results and literature values of isobaric heat capacities, the molar volumes, isentropic and isothermal compressibility coefficients, molar isentropic and isothermal compressibilities, isochoric heat capacities as well as internal pressures were calculated. Also the corresponding excess and deviation values (excess molar volumes, excess isentropic and isothermal compressibility coefficients, excess molar isentropic and isothermal compressibilities, different defined deviation speed of sound and dynamic viscosity deviations) were calculated. The excess values are negative over the whole concentration and temperature range. The excess and deviation values are expressed by Redlich–Kister polynomials and discussed in terms of the variations of the structure of the system caused by the participation of the two different alcohol molecules in the dynamic intermolecular association process through hydrogen bonding at various temperatures. The predictive abilities of Grunberg–Nissan and McAllister equations for viscosities of mixtures have also been examined.  相似文献   

2.
Isobaric specific heat capacities were measured for {1-hexyl-3-methylimidazolium tetrafluoroborate (HMIMBF4) + acetonitrile (MeCN)} and {1-methyl-3-octylimidazolium tetrafluoroborate (OMIMBF4) + acetonitrile} within the whole range of composition and temperatures from (283.15 to 323.15) K. The excess molar heat capacities were calculated from the experimental results and satisfactorily fitted to Redlich–Kister type polynomials for several selected temperatures. Negative deviations from the additivity of molar heat capacities were observed within the whole composition range of (HMIBMF4 + MeCN) and (OMIMBF4 + MeCN). The results obtained have been interpreted in terms of interactions between ionic liquids and acetonitrile.  相似文献   

3.
Density, isobaric molar heat capacity, and excess molar enthalpy were experimentally determined at atmospheric pressure for a set of binary systems ionic liquid + nitromethane. The studied ionic liquids were: 1-butyl-3-methylimidazolium tetrafluoroborate, 1-hexyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylpyridinium tetrafluoroborate, 1-ethyl-3-methylimidazolium ethylsulfate, 1-butyl-3-methylimidazolium methylsulfate, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, and 1-butyl-3-methylimidazolium trifluoromethanesulfonate. Density and heat capacity were obtained within the temperature range (293.15 to 318.15) K whereas excess molar enthalpy was measured at 303.15 K; excess molar volume and excess molar isobaric heat capacity were calculated from experimental data. The ERAS-model was applied in order to study the microscopic mechanisms involved in the mixing process. Although the studied compounds are not self-associated, ERAS-model describe adequately the experimental results if cross-association between both compounds is considered.  相似文献   

4.
Isobaric specific heat capacities were measured for (2-methyl-2-butanol + heptane) mixtures and cyclopentanol within the temperature range from (284 to 353) K, and for 2-methyl-2-butanol in the (284 to 368) K temperature interval by means of a differential scanning calorimeter. The excess molar heat capacities were calculated from the experimental results. For the temperature range from (284 to 287) K, the excess molar heat capacity is S-shaped with negative values in the 2-methyl-2-butanol rich region and with small negative values at low alcohol concentrations at temperatures from (295 to 353) K. The excess molar heat capacities are positive for all compositions under test at temperatures from (288 to 294) K. The results are explained in terms of the influence of the molecular size and configuration of the alkanols on their self-association capability and of the change in molecular structure of the (2-methyl-2-butanol + heptane) mixtures. The differences between the temperature dependences of the heat capacities of the mixtures studied are qualitatively consistent with results obtained by Rappon et al. [M. Rappon, J.M. Greer, J. Mol. Liq. 33 (1987) 227–244; M. Rappon, J.A. Kaukinen, J. Mol. Liq. 38 (1988) 107–133; M. Rappon, R.M. Johns, J. Mol. Liq. 40 (1989) 155–179; M. Rappon, R.T. Syvitski, K.M. Ghazalli, J. Mol. Liq. 62 (1994) 159–179; M. Rappon, R.M. Johns, J. Mol. Liq. 80 (1999) 65–76; M. Rappon, S. Gillson, J. Mol. Liq. 128 (2006) 108–114].  相似文献   

5.
Mutual solubility data of the binary (methanol + limonene) mixture at the temperatures ranging from 288.15 K close to upper critical solution temperature, and ternary (liquid + liquid) equilibrium (tie-lines) of the (methanol + ethanol + limonene) mixture at the temperatures (288.15, 298.15, and 308.15) K have been obtained. The experimental results have been represented accurately in terms of the extended and modified UNIQUAC models with binary parameters, compared with the UNIQUAC model. The temperature dependence of binary and ternary (liquid + liquid) equilibrium for the binary (methanol + limonene) and ternary (methanol + ethanol + limonene) mixtures could be calculated successfully using the extended and modified UNIQUAC model.  相似文献   

6.
The isobaric specific heat capacities were measured for (decan-1-ol + n-heptane) mixtures within the temperature range from (290.91 to 318.39) K by means of a differential scanning calorimeter. The results are explained in terms of self-association of alkanols and non-specific interactions between decan-1-ol and n-heptane. The experimental excess molar heat capacities were compared with those calculated with the aid of the ERAS model.  相似文献   

7.
The experimental equilibrium tie-lines of two quaternary mixtures for (methanol + 1,1-dimethylpropyl methyl ether + toluene + 2,2,4-trimethylpentane) and (methanol + 1,1-dimethylethyl methyl ether + toluene + 2,2,4-trimethylpentane) were measured at the temperature 298.15 K and ambient pressure. The quaternary experimental results and their constituent ternaries have been satisfactorily predicted using binary parameters alone obtained by an associated-solution model that takes into account association of methanol molecules and solvation between (methanol + polar molecules) with allowance for a non-polar interaction given by an extended form of the UNIQUAC model. The results are further compared with those correlated by modified and extended forms of the UNIQUAC models that include multi-body interaction parameters in addition to binary ones.  相似文献   

8.
The aim of this paper is to report experimental densities, excess molar enthalpies and refractive indexes of the ternary system (propyl propanoate + hexane + toluene) and of the corresponding binary mixtures (propyl propanoate + toluene) and (hexane + toluene) at the temperature 298.15 K and atmospheric pressure, over the whole composition range. Also, the excess molar volumes and the changes in the refractive index on mixing have been calculated from the measured data for all mixtures.  相似文献   

9.
The speed of sound in (heptane + dodecane) mixtures was measured over the whole concentration range at pressures up to 101 MPa and within the temperature range from (293 to 318) K. The density of (heptane + dodecane) was measured in the whole composition range under atmospheric pressure and at temperatures from (293 to 318) K. The densities and heat capacities of these binaries at the same temperatures were calculated for pressures up to 100 MPa from the speeds of sound under elevated pressures together with the densities and heat capacities at atmospheric pressure. The effects of pressure and temperature on the excess molar volume and the excess molar heat capacity are discussed.  相似文献   

10.
Densities, speeds of sound and refractive indices have been measured for (n -hexane  +  cyclohexane  +  1-hexanol) and its corresponding binaries atT =  298.15 K. In addition, ideal isentropic compressibilities were calculated from the speeds of sound, densities, and literature heat capacities and cubic expansion coefficients. The excess molar volumes and excess isentropic compressibilities, and deviations of the speed of sound and refractive index are correlated by polynomials and discussed.The Nitta–Chao model was used to estimate binary and ternary excess molar volumes, and several empirical equations were also used to calculate the excess and deviation properties.  相似文献   

11.
Densities, ρ speeds of sound, u and dynamic viscosities, η of the ternary mixtures {dimethyl carbonate (DMC) + methanol + ethanol} and (dimethyl carbonate + methanol + hexane) were gathered at T = (293.15, 298.15, 308.15, and 313.15) K. From experimental data viscosity deviations, Δη of the ternary mixtures were evaluated. These results have been correlated using the Cibulka equation. The fitting parameters and the standard deviations of the ternary viscosity deviations are given. UNIFAC-VISCO group contribution method was used to predict the dynamic viscosities of the ternary mixtures at several temperatures.  相似文献   

12.
(Liquid + liquid) equilibrium (LLE) data for the ternary mixtures of (methanol + aniline + n-octane) and (methanol + aniline + n-dodecane) at T = 298.15 K and ambient pressure are reported. The compositions of liquid phases at equilibrium were determined and the results were correlated with the UNIQUAC and NRTL activity coefficient models. The partition coefficients and the selectivity factor of methanol for the extraction of aniline from the (aniline + n-octane or n-dodecane) mixtures are calculated and compared. Based on these comparisons, the efficiency of methanol for the extraction of aniline from (aniline + n-dodecane) mixtures is higher than that for the extraction of aniline from (aniline + n-octane) mixtures. The phase diagrams for the ternary mixtures including both the experimental and correlated tie lines are presented. From the phase diagrams and the selectivity factors, it is concluded that methanol may be used as a suitable solvent in extraction of aniline from (aniline + n-octane or n-dodecane) mixtures.  相似文献   

13.
Experimental measurements of excess molar enthalpy, density, and isobaric molar heat capacity are presented for a set of binary systems ionic liquid + water as a function of temperature at atmospheric pressure. The studied ionic liquids are 1-butyl-3-methylpyridinium tetrafluoroborate, 1-ethyl-3-methylimidazolium ethylsulfate, 1-butyl-3-methylimidazolium methylsulfate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. Excess molar enthalpy was measured at 303.15 K whereas density and heat capacity were determined within the temperature range (293.15 to 318.15) K. From experimental data, excess molar volume and excess molar isobaric heat capacity were calculated. The analysis of the excess properties reveals important differences between the studied ionic liquids which can be ascribed to their capability to form hydrogen bonds with water molecules.  相似文献   

14.
Isopiestic measurements have been carried out for the quinary system (water + methanol + ethanol + sodium bromide + ammonium bromide) with a mass ratio of water:methanol:ethanol=18:1:1 or 8:1:1 at the temperature 298.15 K. The results fit the ideal-like solution model within experimental errors.  相似文献   

15.
Precise excess volumes of mixing measurements at T = 313.15 K are reported over the whole composition range for binary mixtures: (N,N-dimethylacetamide + water), (N,N-dimethylacetamide + methanol), (N,N-dimethylacetamide + ethanol) and for the ternary mixtures (N,N-dimethylacetamide + methanol + water) and (N,N-dimethylacetamide + ethanol + water). For all the systems, large negative deviations from ideality are observed. The binary results have been fitted using the Redlich–Kister type polynomial. The possibility of predicting the ternary results from the binary ones was examined.  相似文献   

16.
《Fluid Phase Equilibria》2006,239(1):69-82
Densities of the (methanol + benzene), (ethanol + benzene), (methanol + chlorobenzene) and (ethanol + chlorobenzene) mixtures have been measured at six temperatures (288.15, 293.15, 298.15, 303.15, 308.15 and 313.15 K) and 101.33 kPa. Excess molar volumes VE were determined and fitted by the Redlich–Kister equation. It was observed that in all cases VE increases with rising of temperature. The values of limiting excess partial molar volumes have been calculated, as well. The obtained results have been analysed in terms of specific molecular interactions present in these mixtures taking into considerations effect of temperature on them. The correlation of VE binary data was performed with the Peng–Robinson–Stryjek–Vera cubic equation of state (PRSV CEOS) coupled with the van der Waals (vdW1) and CEOS/GE mixing rule introduced by Twu, Coon, Bluck and Tilton (TCBT). The experimental values of VE were compared with those estimated by both mixing rules at the temperature range and on each temperature, separately.  相似文献   

17.
Density ρ, viscosity η, and refractive index nD, values for (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures over the entire range of mole fraction have been measured at temperatures (298.15, 303.15, and 308.15) K at atmospheric pressure. The speed of sound u has been measured at T = 298.15 K only. Using these data, excess molar volume VE, deviations in viscosity Δη, Lorentz–Lorenz molar refraction ΔR, speed of sound Δu, and isentropic compressibility Δks have been calculated. These results have been fitted to the Redlich and Kister polynomial equation to estimate the binary interaction parameters and standard deviations. Excess molar volumes have exhibited both positive and negative trends in many mixtures, depending upon the nature of the second component of the mixture. For the (tetradecane + chlorobenzene) binary mixture, an incipient inversion has been observed. Calculated thermodynamic quantities have been discussed in terms of intermolecular interactions between mixing components.  相似文献   

18.
Density and viscosity measurements for binary mixtures of (1,1,2,2-tetrabromoethane + 1-pentanol, or + 1-hexanol, or + 1-heptanol, or + 1-octanol, or + 1-decanol) at T = (293.15 and 303.15) K, have been conducted at atmospheric pressure. The excess molar volumes VE, have been calculated from the experimental measurements, and the results were fitted to Redlich–Kister equation. The viscosity data were correlated with the model of Grunberg and Nissan, and McAllister four-body model. The excess molar volumes of (1,1,2,2-tetrabromoethane + 1-pentanol, or + 1-haxanol, or + 1-heptanol, or + 1-octanol) had a sigmoidal shape and the values varied from negative to positive with the increase in the molar fraction of 1,1,2,2-tetrabromoethane. The remaining binary mixture of (1,1,2,2-tetrabromoethane + 1-decanol) was positive over the entire composition range. The effects of the 1-alkanol chain length as well as the temperature on the excess molar volume have been studied. The results have been qualitatively used to explain the molecular interaction between the components of these mixtures.  相似文献   

19.
Excess molar enthalpies of (2- butanone  +  cyclohexane, or methylcyclohexane, or toluene, or chlorobenzene, or cyclohexanone) and excess molar heat capacities of (2- butanone  +  benzene, or toluene, or chlorobenzene, or cyclohexanone) were measured atT =  298.15 K. Aliphatic systems were endothermic and the chlorobenzene system was exothermic. On the other hand, the toluene system changed sign to be S-shaped similar to the benzene system reported by Kiyohara et al. The values of excess molar enthalpies of the present mixtures were slightly larger than the corresponding mixtures of cyclohexanone already reported. Excess molar heat capacities of aromatic systems were characteristically S-shaped for the mixture containing aromatics. The values of the present mixtures were less than the corresponding mixtures of cyclohexanone. The mixture (2-butanone  +  cyclohexanone) was endothermic forHmE and negative for Cp,mE.  相似文献   

20.
Measurements of the isobaric specific heat capacities for {xCH3OH + (1  x)H2O} with x = (1.0000, 0.7943, 0.4949, 0.2606, 0.1936, 0.1010, and 0.0496) were carried out by the calorimeter with the thermal relaxation method, which we have developed, at T = (280, 320, and 360) K in the pressure range from (0.1 to 15) MPa. The present cp measurements for (methanol + water) show mole fraction dependence at constant temperature with the maximum, and the maximum shifts to greater values of mole fraction with increasing temperature. Pressure dependence of the present measurements is insignificant. Temperature dependence increases with increasing mole fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号